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Abstract. Inferring the correspondences between consecutive video frames 

with high accuracy is essential for many medical image processing and comput-

er vision tasks (e.g. image mosaicking, 3D scene reconstruction). Image corre-

spondences can be computed by feature extraction and matching algorithms, 

which are computationally expensive and are challenged by low texture frames. 

Convolutional neural networks (CNN) can estimate dense image correspond-

ences with high accuracy, but lack of labeled data especially in medical imaging 

does not allow end-to-end supervised training. In this paper, we present an un-

supervised learning method to estimate dense image correspondences (DIC) be-

tween endoscopy frames by developing a new CNN model, called the 

EndoRegNet. Our proposed network has three distinguishing aspects: a local 

DIC estimator, a polynomial image transformer which regularizes local corre-

spondences and a visibility mask which refines image correspondences. The 

EndoRegNet was trained on a mix of simulated and real endoscopy video 

frames, while its performance was evaluated on real endoscopy frames. We 

compared the results of EndoRegNet with traditional feature-based image regis-

tration. Our results show that EndoRegNet can provide faster and more accurate 

image correspondences estimation. It can also effectively deal with defor-

mations and occlusions which are common in endoscopy video frames without 

requiring any labeled data.   
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1 Introduction 

Estimating image correspondences is the base of many medical image processing and 

computer vision algorithms. Traditional methods such as SIFT [1] or KLT [2] have 

shown remarkable results in estimating image correspondences and registering endos-

copy frames [3, 4], yet they are computational expensive, may fail for frames with 
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sparse textures, and become unreliable when objects deform (one example of corre-

spondences estimation by SIFT feature tracking [5], SIFT flow [1] and our method 

(EndoRegNet) is shown if Fig.1). 

 

Fig. 1. Example of correspondences estimation by the SIFT feature tracker, SIFT flow, and our 

proposed method (EndoRegNet) from consecutive colonoscopy frames, frames are overlaid, 

SIFT flow and EndoRegNet are shown sparsely for better visualization of the motion. 

In recent years, methods based on deep Convolutional Neural Networks (CNN) have 

been shown to be accurate in image correspondence estimation. Ji et al. [6] developed 

a deep view morphing network that can predict the middle view and image corre-

spondences between two frames. Fischer et al. proposed FlowNet [7] which can pre-

dict dense motion flow between two frames. However, these methods need a large 

amount of labeled data for training and testing, which hamper performance when not 

available because it is very difficult to generate a ground-truth for correspondences of 

endoscopy images (even when using a simulator). The lack of ground-truth to allow 

end-to-end network training, especially in medical imaging, has increased the popu-

larity of unsupervised or semi-supervised CNNs. For instance, Zhou et al. [8] and 

Garg et al. [9] have estimated depth, and Yin and Shi [10] estimated depth, camera 

pose and optical flow from images without using labeled  data. Meister el al. [11] and 

Wang et al. [12] however, focused mainly on unsupervised flow estimation by esti-

mating back and forth motion using FlowNet architecture and introducing an loss 

function to deal with occlusion. Although, they have shown remarkable results in 

comparison to supervised methods (e.g. FlowNet), for a more challenging dataset 

such as Sintel [13] which include deformation and occlusion, their method cannot 

outperform supervised methods, and needs improvements. Besides, using FlowNetS 

as the base of their network structure means a requirement of a huge dataset for train-

ing. In our method, we tackled deformation by learning parameters of a global poly-

nomial transformation between consecutive frames, and inspired by deep view 

morphing [6] we developed a CNN that can be trained with smaller dataset. In medi-

cal imaging, De vos et al. [14] registered cardiac MRI images through implementing a 

cubic B-spline transformer and spatial transformer network [15]. Although their 

method can deal with deformable MRI images, it cannot handle occlusion, which is 

common in colonoscopy images.  

In this paper, we propose a novel CNN architecture to predict correspondences of 

deformable, sparse texture endoscopy images through image registration while being 

robust to occluded areas. Our method does not require labeled data. We achieved this 

by developing a network comprising three components: (i) a Dense Image Corre-



spondences (DIC) sub-network that predicts pixel displacement between two frames 

as (dx,dy) and allows local deformation; (ii) a Polynomial Transformer Parameters 

(PTP) sub-network, which estimates polynomial parameters between two frames and 

can produce a global motion flow which is used to regularize the output of the DIC 

network; (iii) and a Visibility Mask (VM) sub-network, which predicts occluded areas 

in the second frame. The output of the dense image correspondences and the polyno-

mial subnetwork are the input to a bilinear image transformer which transforms the 

second image to the first one. The loss function is computed as absolute difference 

between first image 𝐼1 and a transformation of second image 𝐼2 to 𝐼1 based on both 

motion and polynomial transformation estimated by the DIC and PTP networks, along 

with absolute difference between correspondences obtained by the PTP and DIC net-

work. Since our model performs image registration for endoscopy, we call our net-

work EndoRegNet. The EndoRegNet is unsupervised and there is no need for any 

labeled data for training. We train the network with both simulated and real colonos-

copy video frames. Our results show excellent performance in image registration of 

colonoscopy frames that are non-rigid and have sparse texture. Further, EndoRegNet 

can be used to register any endoscopy video frames, or indeed other non-rigid scenes. 

We test EndoRegNet on vivo datasets [16, 17]. The key contributions of the En-

doRegNet can be summarized as (i) using a polynomial transformation to regularize 

local pixel displacement (a polynomial transformation unlike affine transformation 

can model deformation between two frames, which is a main difference between our 

method and other unsupervised method such as [11]) ; (ii) dealing with deformation 

by using absolute pixel-by-pixel transformations regularized by a polynomial trans-

formation; (iii) refining image correspondences for occluded areas by calculating a 

visibility mask. We could obtain good results by training our network even on a small 

medical image dataset. The overview of our method is shown in Fig.2.  

 

Fig. 2. The endoscopy image registration network (EndoRegNet). DIC and PTP are dense 

image correspondences and polynomial transformer parameters sub-network, 𝑃𝑐(𝑥c2, 𝑦𝑐2) and 

𝑃𝑝(𝑥𝑝2, 𝑦𝑝2) are image correspondences estimated by DIC and PTP. 



2 Method 

Our goal is to register colonoscopy frames and estimate dense image correspondences 

between consecutive frames through image registration. This can be performed by 

estimating pixel displacement between two frames, however a network that only es-

timates pixel displacement can result in outliers and consequently a poor image regis-

tration. Here we introduce a new approach to address this through regularizing local 

pixel displacement by estimating a global transformation. In this paper, we introduce 

a polynomial function of second order (as it can deal with deformations) to determine 

the global transformation between two frames. Colonoscopy frames include haustral 

folds which lead to occlusions, so a visibility mask similar to [6] is also included in 

the model to improve registration performance by omitting occluded areas. The 

EndoRegNet is introduced in the following. 

2.1 Dense image correspondence (DIC) sub-network  

Image correspondences or the dense flow field between two consecutive frames 

(𝐼1, 𝐼2) can be estimated as a relative offset of (𝑑𝑥, 𝑑𝑦) for each point pair. Each pair 

of points from 𝐼1 as target image 𝑃(𝑥1, 𝑦1) can be mapped to source image point 

𝑃𝑐(𝑥c2, 𝑦𝑐2)  through: 

                                          𝑥c2 = 𝑥1 + 𝑑𝑥  , 𝑦c2 = 𝑦1 + 𝑑𝑦                                                 (1) 

Our DIC sub-network accepts two consecutive images as input, and estimates pixel 

displacement (𝑑𝑥, 𝑑𝑦) for each pixel. By finding the mapping relation between 𝐼1 and 

𝐼2 from Equation (1), bilinear sampling which is explained in [15] can be used to gen-

erate a transformed image  𝐼𝑡𝑐  which is a transformation of 𝐼2 onto  𝐼1. The DIC sub-

network minimizes the 𝐿1norm; the absolute difference between  𝐼𝑡𝑐 and 𝐼1, known as 

photometric loss, which has been used in unsupervised view synthesis algorithms 

(e.g. [18]): 𝐿𝑐 =  | 𝐼𝑡𝑐 − 𝐼1|. 

2.2 Polynomial transformation parameters (PTP)  

Similarly to the view synthesis approach, if we only use DIC, we will be highly sub-

ject to outliers where individual point pairs have better matches on photometric loss 

but that are not consistent with their local regions. Here, we introduce a polynomial 

transformation to regularize the motion of images points between 𝐼1 and 𝐼2. We map a 

set of grid points 𝑃(𝑥1, 𝑦1) which indicate pixel position in a target image 𝐼1  to a 

source image 𝐼2  points 𝑃𝑝(𝑥𝑝2, 𝑦𝑝2) by finding second degree polynomial transfor-

mation coefficients (𝜃𝑖𝑗) between them as 𝑃𝑝 =  𝜃𝑖𝑗 ∙ 𝑃 and can be extended as fol-

lows: 

 [
𝑥𝑝2

𝑦𝑝2
] = [ 

𝜃11 𝜃12 𝜃13

𝜃21 𝜃22 𝜃23
   

𝜃14 𝜃15 𝜃16

𝜃24 𝜃25 𝜃26
] ∙ [ 𝑥1 𝑦1 𝑥1𝑦1   𝑥1

2 𝑦1
2 1]𝑡    (2) 



Here, 𝑃𝑝determines where to sample pixels from 𝐼2 to obtain transformed image 𝐼𝑡𝑝 

which is a transformation of 𝐼2 onto 𝐼1. The PTP sub-network estimates polynomial 

coefficients 𝜃𝑖𝑗 by minimizing a photometric loss similar to DIC sub-network: 𝐿𝑝 =

| 𝐼𝑡𝑝 − 𝐼1|. Again we incorporate bilinear sampling [15] in a similar manner to DIC to 

infer 𝐼𝑡𝑝. 

2.3 Visibility mask (VM) sub-network 

Colonoscopy frames include haustral folds which cause occlusions. This occlusion 

prevents a full view of next frame and therefore increases the number of outliers be-

tween two consecutive frames. The effect of occlusion has been reduced by determin-

ing the visible area between two frames through a visibility mask (VM) [6, 19]. The 

last layer of VM sub-network has a sigmoid function that assigns one for existing 

correspondences and zero when correspondences are not found by the DIC sub-

network or PTP. We modify the 𝐿𝑐  and 𝐿𝑝 to learn 𝑉𝑀𝑐 and 𝑉𝑀𝑝 which are the visi-

bility masks for the DIC and PTP respectively: 

                                  𝐿𝑐 = |𝐼𝑡𝑐 ∙ 𝑉𝑀𝑐 − 𝐼1| ,    𝐿𝑝 =  |𝐼𝑡𝑝 ∙ 𝑉𝑀𝑝 − 𝐼1|                               (3) 

2.4 Regularized DIC and final objective function 

To regularize local pixel displacement estimated by the DIC, we reduce the absolute 

difference between global positions estimated by the PTP sub-network 𝑃𝑝 and local 

position estimated by the DIC sub-network 𝑃𝑐  as 𝐿𝑟 =  𝜆 ∙ |𝑃𝑐 −  𝑃𝑝| . Here 𝜆  is a 

weight, and empirically 𝜆 = 0.9 shows good results.  

In general, the objective function for whole network can be calculated as sum of 𝐿𝑐 

and 𝐿𝑝 which are estimated from equation 3 and 𝐿𝑟 as a regularization term: 

                                         𝐿𝑜𝑠𝑠 =  𝐿𝑐 + 𝐿𝑝 + 𝐿𝑟                                                                 (4) 

2.5 Architecture and training details 

The first part of EndoRegNet consists of 6 convolutional layers which are shared 

among other sub-networks. EndoRegNet takes two consecutive RGB frames as input 

of size 224×224 pixels. PTP consists of three convolution layers followed by a fully 

connected layer to estimate 𝜃𝑖𝑗. The DIC sub-network is formed by three convolu-

tional layers, and five de-convolutional layers. The VM sub-network has six de-

convolutional layers and its last layer is a convolutional layer with a sigmoid activa-

tion function. The EndoRegNet architecture is shown in Fig.2.  

The whole network was implemented and trained using the GPU version of Ten-

sorflow [20]. We used ADAM solver [21] with the initial learning rate of 0.0001, β1 

and β2 were 0.9 and 0.999 respectively. We used multi-GPU (Nvidia). Our network 

began to converge after 150,000 iterations. 



 

Fig. 3.   The EndoRegNet architecture  

3 Dataset  

Simulated and real colonoscopy frames. Our dataset includes 29,000 pairs of 

frames which were extracted from simulated and real colonoscopy videos. The simu-

lated frames were generated by a simulator described in [22]. The simulations were of 

ten different colons, and formed 72% of the data. The real frames extracted from six 

colonoscopy videos (six different patients). A 190HD Olympus endoscope was used 

to perform real colonoscopy procedures, which could capture 50 frame/sec (frame 

size was 1352×1080 pixels). We only used the informative frames for training and 

validation and removed uninformative frames (e.g. out of focus frames or blurry or those 

close to the colon wall) [23] from our computation.  

Real colonoscopy frames. We used a colonoscopy dataset from Hamlyn Center Lap-

aroscopic (HCL) [24] to validate the generalization performance of our trained net-

work. The video frames were captured either by Olympus NBI endoscope, or a Pentax 

i-scan endoscope [17].  From HCL colonoscopy videos, the video number 10 (vn10) 

has been chosen for our test as it contained 1250 pairs of consecutive frames. 25% of 

these frames were uninformative and ignored in our experiments.  

Laparoscopy video frames. In addition to the above, we trained the EndoRegNet 

with 80% of two set of laparoscopic in vivo video frames [16]. The first set contained 

1220 pairs of stereo video frame, and the second set contained 5626 consecutive 

frames with deformation due to tools interaction.   

4 Experiments and results 

EndoRegNet was trained with 80% of our colonoscopy data, which was a mix of real 

and simulated colonoscopy frames (46476 frames). The trained EndoRegNet was then 

validated on real colonoscopy test data by computing mean absolute difference 

(MAD) and structural similarity index map (SSIM) (please see [25]) between 𝐼1 and 

resgitered image. Note that we used default parameters for SSIM as stated in original 

paper [25]. Examples of SSIMs are presented in Fig. 4 (a) and results as the mean of 

SSIM and MAD are reported in Fig.6. We evaluated the performance of our trained 

network on real colonoscopy video frames vn10 which were obtained from [24] 

(b.1,b.2) in Fig.4. The results are presented in Fig.6.  



We trained each set of laparoscopy video frames with the pre-trained EndoRegNet. 

80% of data was used for training. Examples of stereo pairs and tool interaction are 

shown in Fig.4. (c,d) and Fig.5.  

In addition, we compared the results of our network with traditional image registra-

tion using polynomial transformation and SIFT flow. The correspondences were esti-

mated by using SIFT features explained in [5]. Results are reported in Fig.6. Note that 

the test set has not been used in training phase and for the sake of comparison we did 

not apply visibility masks on registered images obtained by EndoRegNet.   

 

 

Fig. 4. Examples of images and SSIM between 𝐼1, 𝐼2 and  𝐼1 and registered images by tradition-

al feature-based method polynomial (𝑰𝒑𝒐𝒍) transformation when SIFT is used as feature detector, 

EndoRegNet PTP (𝑰𝒕𝒑), SIFT  flow  (𝑰𝑺𝑰𝑭𝑻 𝒇𝒍𝒐𝒘), and DIC (𝑰𝒕𝒄). Real colonoscopy from our dataset 

(a), colonoscopy frames from Hamlyn (vn10) [17] (b.1,b.2), laparoscopy frame [16] (c), lapa-

roscopy frame when tool interacts with organs and results in deformations (d). The red arrows 

show areas with deformation. Note that higher similarity leads to brighter area.    



 

Fig. 5. Sample of deformed endoscopy sequences, two consecutive frames when a tool interacts 

with organ (deformed region is cropped for better perception, yellow rectangle) (a), SSIM 

between 𝐼1, 𝐼2 and  𝐼1 and registered image with EndoRegNet (b).  

 

Fig. 6. The mean of SSIM and MAD error of different image registration method including 

polynomial (𝑰𝒑𝒐𝒍) transforms when SIFT is used as feature detector, EndoRegNet PTP (𝑰𝒕𝒑), 

SIFT  flow, and DIC (𝑰𝒕𝒄) over endoscopy frames. Our real colonoscopy test set, vn10 from 

Hamlyn [17], laparoscopy test set [16] , and deformed laparoscopy test set. Higher the SSIM 

and lower the MAD is better.   

5 Discussion and Conclusion 

In this paper, we present an unsupervised method to register deformable endoscopy 

video frames and estimate their correspondences. This is achieved by introducing a 

novel CNN model, called EndoRegNet, which has three main parts; (i) a dense image 

correspondences (DIC) sub-network, which estimates local displacement of pixels; 

(ii) polynomial transformation parameters (PTP) estimator, which is used to regular-

izes correspondences estimated by DIC, it can also deal with global deformations; (iii) 

and a visibility mask VM sub-network, which can refine correspondences  in case of 

an occlusion (this is very common in colonoscopy video frames). 

We trained all parts of EndoRegNet at the same time. At the test time, only DIC 

and VM could be used to predict correspondences between two consecutive frames 

and refine them. The results of EndoRegNet were compared with feature-based image 

registration for different set of endoscopy video frames. Our results presented in 

Fig.6. show high performance of EndoRegNet and its ability to generalize to new 

datasets. Note that we trained EndoRegNet on a training set and then evaluated its 



performance on data that has not been observed in the training phase by computing 

SSIM and MAD.  

Further, EndoRegNet showed excellent performance in registering deformed se-

quences (e.g. Fig.5). As shown in Fig.5 (b) warping functions such as polynomial are 

inadequate to deal with the deformed images. We used a combination of local pixel 

displacement DIC and a second degree polynomial transformation PTP to deal with 

deformation. Particularly in Fig. (4) (b,d) it can be seen that some local strong defor-

mation artefacts are better handled by the combination.  

Other unsupervised flow estimation methods introduced by Meister el al. [11] and 

Wang et al. [12] are using FlowNet architecture but they have over 150 million pa-

rameters and thus require a huge training dataset. This is not feasible for our applica-

tion. Instead, our proposed method provides excellent performance without requiring 

a large training data. We plan to improve our deformation model by using different 

objective function and convolution layers to better model long displacement and de-

formation.  
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