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Abstract Zero shot learning (ZSL) identifies unseen

objects for which no training images are available. Con-

ventional ZSL approaches are restricted to a recognition

setting where each test image is categorized into one of

several unseen object classes. We posit that this set-

ting is ill-suited for real-world applications where un-

seen objects appear only as a part of a complete scene,

warranting both ‘recognition’ and ‘localization’ of the

unseen category. To address this limitation, we intro-

duce a new ‘Zero-Shot Detection’ (ZSD) problem set-

ting, which aims at simultaneously recognizing and lo-

cating object instances belonging to novel categories,

without any training samples. We introduce an inte-

grated solution to the ZSD problem that jointly models

the complex interplay between visual and semantic do-

main information. Ours is an end-to-end trainable deep
network for ZSD that effectively overcomes the noise

in the unsupervised semantic descriptions. To this end,

we utilize the concept of meta-classes to design an orig-

inal loss function that achieves synergy between max-

margin class separation and semantic domain cluster-

ing. In order to set a benchmark for ZSD, we propose

an experimental protocol for the large-scale ILSVRC
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dataset that adheres to practical challenges, e.g., rare

classes are more likely to be the unseen ones. Further-

more, we present a baseline approach extended from

conventional recognition to the ZSD setting. Our ex-

tensive experiments show a significant boost in perfor-

mance (in terms of mAP and Recall) on the impera-

tive yet difficult ZSD problem on ImageNet detection,

MSCOCO and FashionZSD datasets.1

Keywords Zero-shot learning · Zero-shot object

detection · Deep learning · Loss function

1 Introduction

Humans have the amazing ability to develop a general-

izable knowledge-base that compiles our sensorimotor

experiences over time and relates them to abstract con-

cepts. For instance, if we have seen visual examples of

‘horse’ and ‘donkey ’, we can easily recognize their dis-

tinctive individual characteristics, such as horses have

short ears, long tails and thin coats, while donkeys are

shorter in height, have thick coats, long ears and shorter

tails. These associations between visual and semantic

content enable us to make inferences about unobserved

content based on our previous knowledge. As an exam-

ple, if we are described an animal that has close re-

semblance to both a horse and a donkey and which

is smaller than a horse but bigger than a donkey, we

can imagine what a ‘mule’ looks like. Such an intelli-

gent reasoning ability regarding the unobserved world

would be highly valuable for life-long and self-learning

machines.

Since its inception, the main focus of zero-shot learn-

ing research has been object classification [2,6,13,20,

1 The codes and dataset split are available at: https://

github.com/salman-h-khan/ZSD_Release

https://github.com/salman-h-khan/ZSD_Release
https://github.com/salman-h-khan/ZSD_Release
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24,25,32,36,47,56,64,66,67]. Although zero-shot recog-

nition is still an open research problem, we hypothesize

that this setting has a number of limitations that render

it unsuitable for real-life applications. First, it assumes

a simple case where only a single dominant category is

present in an image. Second, the predictions are made

for a complete scene, while in practice, the attributes

and semantic descriptions are generally relevant to in-

dividual objects rather than the entire scene. Third,

zero-shot recognition provides an answer to unseen cat-

egories in elementary tasks, e.g., classification and re-

trieval, but it cannot be scaled to advanced tasks, such

as scene interpretation and contextual modeling, which

require a fundamental reasoning for all salient objects

in the scene. Fourth, global attributes are more suscep-

tible to background variations, viewpoint, appearance

and scale changes and practical challenges, such as oc-

clusions and clutter. As a result, image-level ZSL fails

for complex scenes where a diverse set of competing

attributes that belong to multiple object categories ex-

ists.

Zero-shot Object Detection: To address the above-

mentioned challenges, we introduce a new problem set-

ting called zero-shot object detection. As illustrated in

Fig. 1, instead of merely classifying images, our goal

is to simultaneously detect and localize each individual

instance of new object classes, even in the absence of

any visual examples of those classes during the train-

ing phase. In this regard, we propose a new zero-shot

detection protocol built on top of the ILSVRC - Object

Detection Challenge [48]. The resulting dataset is very

demanding because of its large-scale, diversity, and un-

constrained nature, and also unique due to its leverag-

ing of WordNet semantic hierarchy [34]. Taking advan-

tage of the semantic relationships among object classes,

we use the concept of ‘meta-classes’2 and introduce a

novel approach to update the semantic embeddings au-

tomatically. Raw semantic embeddings are learned in

an unsupervised manner using text mining and, there-

fore, they have considerable noise. Our optimization of

the class embeddings proves to be an effective way to

reduce this noise and learn robust semantic representa-

tions.

ZSD has numerous applications in novel object lo-

calization, retrieval and tracking, and determining an

object’s relationships with its environment using only

the available semantics, e.g., an object name or a nat-

ural language description. Although a critical problem,

ZSD is remarkably difficult compared to its classifica-

tion counterpart. While the zero-shot recognition prob-

lem assumes there is only a single primary object in an

2 Meta-classes are obtained by clustering semantically sim-
ilar classes.

image and attempts to predict its category, the ZSD

task has to predict both the multi-class category label

and precise location of each instance in a given image.

Since there can be a prohibitively large number of pos-

sible locations for each object in an image and because

the semantic class descriptions are noisy, a detection

approach is much more susceptible to incorrect pre-

dictions compared to classification. Therefore, a ZSD

method is likely to predict a class label that might be

incorrect but is visually and semantically similar to the

corresponding true class. For example, wrongly predict-

ing a ‘spider’ as ‘scorpion’, where both are semantically

similar because they are invertebrates. To address this

issue, we relax the original detection problem to in-

dependently study the confusions emanating from the

visual and semantic resemblance between closely linked

classes. For this purpose, alongside the ZSD, we eval-

uate our model under zero-shot meta-class detection,

zero-shot tagging, and zero-shot meta class tagging set-

tings. Notably, the proposed network is trained only

‘once’ for the ZSD task and the additional tasks are

used during evaluations only.

Our Contributions: Apart from a new large-scale

protocol for ZSD, we propose an end-to-end trainable

network for the ZSD problem that concurrently relates

visual image features with semantic label information.

This network uses a semantic embedding vector of classes

within the network to produce prediction scores for

both seen and unseen classes. We propose a novel loss

formulation that incorporates max-margin learning [67,

65] and a semantic clustering loss based on the class-

scores of different meta-classes. While the max-margin

loss attempts to separate individual classes, the seman-

tic clustering loss tries to reduce the noise in semantic

vectors by positioning similar classes together and dis-

similar classes far apart. Notably, our proposed formu-

lation assumes predefined unseen classes when explor-

ing the semantic relationships during the model learn-

ing phase. This assumption is consistent with recent

efforts in the literature, which adopt class semantics to

solve the domain shift problem in ZSL [10,15], and does

not constitute a transductive setting [11,14,20]. Based

on the premise that, in practice, unseen class semantics

are sometimes unknown during training for zero-shot

scenarios, we also propose a variant of our approach

that can be trained without predefined unseen classes.

Finally, we propose a comparison method for ZSD by

extending a popular zero-shot recognition framework

named ConSE [36], using Faster-RCNN [46]. In sum-

mary, this paper reports the following advances:

– We introduce a new problem setting for zero-shot

learning, which aims to jointly recognize and localize

novel objects in complex scenes.
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Recognition Detection

Fig. 1: ZSD deals with a more complex label space (ob-

ject labels and locations) with considerably less super-

vision (i.e., no examples of unseen classes). (a) The

traditional recognition task only predicts seen class la-

bels. (b) The traditional detection task predicts both

seen class labels and bounding boxes. (c) The tradi-

tional zero-shot recognition task only predicts unseen

class labels. (d) The proposed ZSD predicts both seen

and unseen classes and their bounding boxes.

– We present a new experimental protocol and design

a novel baseline solution extended from conventional

recognition to the detection task.

– We propose an end-to-end trainable deep architec-

ture that simultaneously considers both visual and

semantic information.

– We design a novel loss function that achieves syn-

ergistic effects for max-margin class separation and

semantic clustering, based on meta-classes. Addi-

tionally, our approach can automatically tune noisy

semantic embeddings.

A preliminary version of this work appeared in [44].

The current version extends [44] in the following as-

pects: (a) a comprehensive description of the experi-

mental protocol for the ImageNet dataset is provided

in Sec. 5.1, (b) new ZSD experiments on both the small-

scale CUB dataset and large-scale MS-COCO dataset

are reported in Sec. 5, (c) a description of closely related

works and comparison with our approach is included in

Sec. 2, and (d) an elaborate qualitative result analysis

is performed in Sec. 5.8.

2 Related Work

End-to-end Object detection: Though object de-

tection has been extensively studied in the literature,

we can only find a few end-to-end learning pipelines

capable of simultaneous object localization and classifi-

cation. Popular examples of such approaches are Faster

R-CNN [46], R-FCN [7], SSD [31] and YOLO [45]. The

contribution of these methods pertains to object local-

ization. Methods like Faster R-CNN [46], R-FCN [7]

are based on two-stage training, where a Region Pro-

posal Network (RPN) first provides bounding box pro-

posals for possible objects and then the network per-

forms box-classification and box-regression in the later

layers. In contrast, methods like SSD [31] and YOLO

[45] draw bounding boxes and classify them in a single

step. Unlike RPN, these methods predict the bounding

box offset of pre-defined anchors rather than the box

co-ordinates themselves. The later methods are gener-

ally faster than the previous ones. However, RPN based

methods are more accurate. All these object detectors

are only capable of detecting objects whose training

samples were available. In our current work, we focus

on zero-shot object detection, which aims at detecting

previously unseen object classes during inference. We

build our model on top of a two-stage object detector

(Faster RCNN), chosen due to its excellent performance

for the regular object detection task.

Semantic embedding: Semantic information about

object classes is critical for any zero-shot learning prob-

lem, such as recognition or tagging. This semantic in-

formation works as a bridge between seen and unseen

classes. A common way to encode the semantic infor-

mation of a class is by using a vector represented in

the ‘semantic embedding space’. Visually similar classes

reside in close proximity in this space. The semantic

vector of any class can be generated either manually

or automatically. Manually generated semantic vectors

are often called ‘attributes’ [53,24]. Although attributes

can describe a class with less noise (than other kinds

of embeddings), they require considerable human effort

to acquire manual annotations. As a workaround, au-

tomatic semantic embeddings can be generated from a

large corpus of unannotated text (e.g., Wikipedia, news

articles etc.) or the hierarchical relationship of classes

in WordNet corpus [34]. Some popular examples of such

semantic embeddings are word2vec [33], GloVe [38], and

hierarchies [55]. Since these embeddings are generated

in an unsupervised manner, they are relatively noisy

but provide more flexibility and scalability compared

to manually acquired attributes.

Zero-shot learning: Humans can recognize a new

object by relating it to known concepts, without need
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for prior visual experience. Simulating this behavior in

an automated machine vision system is called Zero-shot

learning (ZSL). In recent years, numerous methods for

ZSL have been proposed. A common thread in all ZSL

strategies is that they relate seen and unseen classes

through semantic embeddings. Based on how this re-

lation is established, ZSL strategies can be categorized

into four types.

a) The first type of methods attempt to predict class-

specific semantic embeddings [37,54,24,63]. An ob-

ject is classified into an unseen class based on the

similarity between the predicted and ground-truth

semantics of unseen classes. This approach does not

work consistently if the semantic vectors are noisy

[18]. This leads such methods to use manually ob-

tained attributes as the semantic embedding.

b) The second kind of methods learn a linear [2,3,47]

or non-linear [55,52] compatibility function to relate

the seen image feature and corresponding seman-

tic vector. This compatibility function yields a high

score if the visual feature and semantic vector come

from the same class and vice versa. Visual features

with the highest compatibility score are classified

as unseen. Such methods work consistently across a

wide variety of semantic embedding vectors.

c) The third kind of methods determine unseen classes

by mixing seen visual features and semantic embed-

dings [36,6,66]. For this purpose, some methods per-

form per class learning and later combine individual

class outputs to make unseen class predictions. The

main difference from (b) is that they do not use

class semantics during training with seen classes.

After the seen training, they relate seen and unseen

through mixing class semantics. While most of the

ZSL approaches convert visual features to semantic

space, [21,64] mapped semantic vectors to the vi-

sual domain to address the hubness problem during

prediction [50].

d) The fourth kind of approaches use synthesized fea-

tures to improve ZSL and GZSL performance [58,

49,59]. The synthesized features are generated using

a Generative Adversarial Network (GAN), a Vari-

ational Auto-encoder (VAE) or their combination.

After synthesizing features of unseen classes, they

train unseen classes in a similar way as supervised

learning. In recent years, these generative approaches

have achieved state-of-the-art ZSL performance. How-

ever, they are dependent on attribute semantics that

require hard manual labeling. Moreover, adding a

new unseen class can be costly because it requires

retraining based on new synthesized unseen data.

To minimize the difficulty level of the ZSL problem,

researchers have investigated transductive setting [62,

61,27], domain adaptation [11,20] and class-attribute

association [4,9] techniques. Usually, ZSL methods are

evaluated on a restricted case of the recognition prob-

lem where test data only contain unseen images. Few re-

cent studies performed experiments on generalized ver-

sion of ZSL [61,57,27]. They found that the established

ZSL methods perform poorly in such settings. Still, all

these methods are restricted to the recognition task.

In this paper, we extend recognition problem to a more

complex detection problem, where both recognition and

localization are required.

Zero-shot image tagging: Rather than assigning

one unseen label to each image, as done in the recogni-

tion task, zero-shot tagging allows multiple unseen tags

be allocated to an image and/or the array of unseen

tags to be ranked. Very few papers have addressed the

zero-shot version of this problem [26,14,67]. Li et al.

[26] applied the ZSL approach proposed in [36] to im-

age tagging. They argued that semantic embeddings of

all possible tags may not be available, and therefore,

proposed a hierarchical semantic embedding method

for the unavailable tags based on its ancestor classes

in WordNet hierarchy. [14] considered the power set of

fixed unseen tags as the label set to perform transduc-

tive multi-label learning. Recently, [67] proposed a fast

zero-shot tagging approach that can rank both seen and

arbitrary unseen tags during the testing stage. All pre-

vious attempts are not end-to-end because they pre-

form training on top of pre-trained CNN features. In

this paper, we propose an end-to-end method for zero-

shot detection and also report performance on relatively

simpler zero-shot object tagging task which does not re-

quire precise localization.

Object-level attribute reasoning: Object level

attribute reasoning has been studied under two themes

in the literature. The first theme advocates the use of

object-level semantic representations in a traditional

ZSL setting. Li et al. [28] proposed to use local at-

tributes and employed these shared characteristics to

obtain zero-shot classification and segmentation. How-

ever, they dealt with fine-grained categorization task,

where both seen and unseen objects have similar shapes

(and segmentation masks), there is a single dominant

category in each image and work with only supervised

attributes. Another approach aiming at zero-shot seg-

mentation is to learn a shape space shared with the

novel objects. This technique, however, can only seg-

ment new object shapes that are very similar to the

training set [19]. Along the second theme, some efforts

have more recently been reported for object localiza-

tion and tracking using natural language descriptions

[17,29]. Different to our problem, they assume an accu-

rate semantic description of the object, use supervised
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examples of objects during training, and therefore do

not tackle the zero-shot detection problem.

Recent efforts on Zero-shot object detection:

In parallel to the preliminary version of this work [44],

several concurrent but independent efforts on ZSD have

been reported [5,8,68]. Bansal et al. [5] presents a back-

ground aware approach for ZSD. It works on pre-computed

object proposals from Edgebox method. The main con-

tribution is to treat the background class such that

the model does not classifies an unseen object as back-

ground. Because of the dependence of offline object pro-

posals, this method is not end-to-end trainable. Demirel

et al. [8] proposed a YOLO detector based method for

ZSD. This method mainly focuses on how to score an

unseen region using unseen word vectors and predic-

tion scores. However, their experimental evaluations are

performed on relatively small-scale datasets, Fashion

MNIST and Pascal VOC. Zhu et al. [68] also proposed

a YOLO based architecture for ZSD. But, their work

only localizes unseen objects without categorizing it to

a particular unseen class. Recently, a new polarity loss

for zero-shot detection has been proposed in [39,41] and

achieved significant performance boost on MSCOCO-

2014 and Pascal VOC-07 datasets. Further, [40] pro-

posed a transductive learning framework for ZSD. How-

ever, none of the works mentioned above deal with the

challenging ImageNet dataset. Apart from proposing an

end-to-end model for ZSD, we provide a new protocol

alongwith seen/unseen split to test ZSD on ImageNet

data. Moreover, we test our method on other large-scale

datasets such as MSCOCO-2014 [30].

3 Problem Description

For a given set of images from seen object categories,

ZSD aims to recognize and localize previously unseen

object categories. In this section, we formally describe

the ZSD problem and its associated challenges. We also

introduce variants of the detection task, which are natu-

ral extensions of the original problem. First, we describe

the notations used in the following discussion.

3.1 Preliminaries

Consider a set of ‘seen’ classes denoted by S = {1, . . . ,S},
whose examples are available during the training stage

and S represents their total number. There exists an-

other set of ‘unseen’ classes U = {S + 1, . . . ,S + U},
whose instances are only available during the test phase.

We denote the set of all object classes by C = S ∪ U ,

such that C = S + U denote the cardinality of the label

space.

We define a set of meta (or super) classes by group-

ing similar object classes into a single meta category.

These meta-classes are denoted by M = {zm : m ∈
[1,M]}, where M denote the total number of meta-

classes and zm = {k ∈ C s.t., g(k) = m}. Here, g(k)

is a mapping function which maps each class k to its

corresponding meta-class zg(k). Note that the meta-

classes are mutually exclusive i.e., ∩Mm=1zm = φ and

∪Mm=1zm = C.
The set of all training images is denoted by X s,

which contains examples of all seen object classes. The

set of all test images containing samples of unseen ob-

ject classes is denoted by X u. Each test image x ∈ X u
contains at least one instance of an unseen class. No-

tably, no unseen class object is present in X s, but X u
may contain seen objects.

We define a d dimensional word vector vc (word2vec

or GloVe) for every class c ∈ C. The ground-truth la-

bel for an ith bounding box is denoted by yi. Since the

object detection task also involves identifying the back-

ground class for negative object proposals, we introduce

the extended label sets: S ′ = S ∪ ybg, C′ = C ∪ ybg and

M′ =M∪ ybg, where ybg = {C + 1} is a singleton set

denoting the background label.

3.2 Task Definitions

Given the observed space of images X = X s ∪ X u and

the output label space C′, our goal is to learn a mapping

function f : X 7→ C′ that gives the minimum regularized

empirical risk (R̂), as follows:

arg min
Θ
R̂(f(x;Θ)) +Ω(Θ), (1)

where, x ∈ X s during training, Θ denotes the set of

parameters and Ω(Θ) denotes the regularization on the

learned weights. The mapping function has the follow-

ing form:

f(x;Θ) = arg max
y∈C

max
b∈B(x)

F(x, y, b;Θ), (2)

where F(·) is a compatibility function, B(x) is the set

of all bounding box proposals in a given image x. In-

tuitively, Eq. 2 finds the best scoring bounding boxes

based on an objectness measure and assigns them the

maximum scoring object category. Next, we define the

zero-shot learning tasks which go beyond a single un-

seen category recognition in images. Notably, the train-

ing is framed as the challenging ZSD problem, however

the remaining task descriptions are used during evalu-

ation to relax the original problem:

T1 Zero-shot detection (ZSD): Given a test image x ∈
X u, the goal is to categorize and localize each in-

stance of an unseen object class u ∈ U .
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T2 Zero-shot meta-class detection (ZSMD): Given a test

image x ∈ X u, the goal is to localize each instance

of an unseen object class u ∈ U and categorize it

into one of the super-classes m ∈M.

T3 Zero-shot tagging (ZST): To recognize one or more

unseen classes in a test image x ∈ X u, without iden-

tifying their location.

T4 Zero-shot meta-class tagging (ZSMT): To recognize

one or more meta-classes in a test image x ∈ X u,

without identifying their location.

Among the above mentioned tasks, the ZSD is the

most difficult problem and difficulty level decreases as

we go down the list. The goal of the later tasks is to

distill the main challenges in ZSD by investigating two

ways of relaxing the original problem: (a) Reducing

the unseen object classes by clustering similar unseen

classes into a single super-class (T2 and T4). (b) Re-

moving the localization constraint. To this end, we in-

vestigate the zero-shot tagging problem, where the goal

is only to recognize all object categories in an image (T3

and T4).

Current state-of-the-art methods for zero-shot learn-

ing only deal with recognition/tagging. The proposed

problem settings add the missing detection task, which

indirectly encapsulates traditional recognition and tag-

ging tasks.

4 Zero-Shot Object Detection

Our proposed model uses Faster-RCNN [46] as the back-

bone architecture, due to its superior performance among

competitive end-to-end object detection models [7,31,

45]. We first provide an overview of our proposed model

architecture and then discuss network learning. Finally,

we extend a popular ZSL approach to the detection

problem, against which we compare our performance

in the experiments.

4.1 Model Architecture

The overall architecture is illustrated in Fig 2. It has

two main components enclosed in boxes: the first pro-

vides object-level feature descriptions and the second

integrates visual information with the semantic embed-

dings to perform zero-shot detection. We explain these

in detail next.

Object-level Feature Encoding: For an input image x, a

deep network (VGG/ ResNet) is used to obtain the in-

termediate convolutional activations. These activations

are treated as feature maps, which are forwarded to a

Region Proposal Network (RPN). The RPN generates

a set of candidate object proposals by automatically

ranking the anchor boxes at each sliding window lo-

cation. The high-scoring proposals can be of different

sizes, which are mapped to fixed sized representation

using a RoI pooling layer that operates on the initial

feature maps and the proposals generated by the RPN.

The resulting object level features for each candidate

are denoted as ‘f ’. Note that the RPN training does

not use object class information. It only predicts an

objectness score and bounding box parameters to each

anchor. As RPN learns what qualifies an object, a RPN

trained on seen objects can generate proposals for un-

seen objects also. We validate this argument through

experiments reported in Sec. 5.2. In the second block

of our architecture, the object-specific feature represen-

tations are used alongside the semantic embeddings to

learn useful representations for both the seen and un-

seen object-categories.

Integrating Visual and Semantic Contexts: The object-

level feature f is forwarded to two branches in the sec-

ond module. The top branch is trained to predict the

object category for each candidate box. Note that this

can assign a class c ∈ C′, which can be a seen, unseen or

background category. The branch consists of two main

sub-networks, which are key to learning the semantic

relationships between seen and unseen object classes.

The first component is the ‘Semantic Alignment Net-

work ’ (SAN), which consist of an adjustable FC layer,

whose parameters are denoted as W1 ∈ Rd×d, that

projects the input visual feature vectors to a seman-

tic space with d dimensions. The resulting feature maps

are then projected onto the fixed semantic embeddings,

denoted by W2 ∈ Rd×(C+1), which are obtained in an

unsupervised manner by text mining (e.g., Word2vec

and GloVe embeddings). Note that, here we consider

both seen and unseen semantic vectors which require

unseen classes to be predefined. This consideration is

inline with a very recent effort [15], which adopted this

setting to explore the cluster manifold structure of the

semantic embedding space and address the domain shift

issue. Given a feature representation input (f t) to SAN

in the top branch the overall operation can be repre-

sented as:

o = (W1W2)T f t. (3)

Here, o is the output prediction score. The W2 is formed

by stacking semantic vectors for all classes, including

the background class. For background class, we use the

mean word vectors vb = 1
C

∑C
c=1 vc as its embedding

in W2. The reason for using such an embedding for the

background class is two-fold. (1) Since a background
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Fig. 2: Network Architecture - Left: Image level feature maps are used to propose candidate object boxes and their

corresponding features. Right: The features are used for classification and localization of new classes by utilizing

their semantic concepts.

box can contain parts of objects (with IoU < 0.5), an

average embedding adequately models the semantics

that could appear in the background category. (2) It

keeps the relationship between word vectors consistent

which is not possible otherwise. To test this hypothesis,

we replace the background embedding with an all one

vector, that results in a very low performance mark (3.2

mAP) for ZSD.

The projection defined by W1 is tunable while W2

defines a fixed embedding. Notably, a non-linear acti-

vation function is not applied between the tunable and

fixed semantic embeddings in the SAN. Therefore, the

two projections can be understood as a single learn-

able projection on to the semantic embeddings of ob-

ject classes. This helps in automatically updating the

semantic embeddings to make them compatible with

the visual feature domain. It is highly valuable because

the original semantic embeddings are often noisy due to

the ambiguous nature of closely related semantic con-

cepts and the unsupervised procedure used for their

calculation. In Fig. 3, we visualize modified embedding

space when different loss functions are applied during

training.

The bottom branch enables bounding box regres-

sion to add suitable offsets to align the proposals with

the ground-truths for precise predictions of object lo-

cations. This branch is set up similar to Faster-RCNN

[46].

4.2 Training and Inference

We follow a two step training approach to learn the

model parameters. The first part involves training the

backbone Faster-RCNN for only seen classes using the

training set X s. This training involves initializing weights

of shared layers with a pre-trained Vgg/ResNet model,

followed by learning the RPN, classification and de-

tection networks. In the second step, we modify the

Faster-RCNN model by replacing the last layer of Faster-

RCNN classification branch with the proposed seman-

tic alignment network and an updated loss function (see

Fig. 2). While rest of the network weights are used from

the first step, the weights W1 are randomly initialized

and the W2 are fixed to semantic vectors of the object

classes and not updated during training.

While training in second step, we keep the shared

layers trainable but fix the layers specific to RPN since

the object proposals requirements are not changed from

the previous step. The same seen class images X s are

again used for training. For each given image, we ob-

tain the output of RPN which consists of a total of ‘R’

ROIs belonging to both positive and negative object

proposals.

Each proposal has a corresponding ground-truth la-

bel given by yi ∈ S ′. Positive proposals belong to any

of the seen class S and negative proposals contain only

background. In our implementation, we use an equal

number of positive and negative proposals. Now, when

object proposals are passed through ROI-Pooling and

subsequent dense layers, a feature representation fi is



8 Shafin Rahman et al.

Fig. 3: The 2D tSNE embedding of modified word vec-

tors W1W2 using only max-margin loss, Lmm (left)

and with clustering loss, Lmm + Lmc (right). Semanti-

cally similar classes are embedded more closely in clus-

ter based loss.

calculated for each ROI. This feature is forwarded to

two branches, the classification branch and regression

branch. The overall loss is the summation of the respec-

tive losses in these two branches, i.e., classification loss

and bounding box regression loss.

L(oi, bi, yi, b
∗
i ) = arg min

Θ

1

T

∑
i

(
Lcls(oi, yi)+Lreg(bi, b

∗
i )
)
,

where Θ denotes the parameters of the network, oi is

the classification branch output, T = N×R represents

the total number of ROIs in the training set with N

images. bi and b∗i are parameterized coordinates of pre-

dicted and ground-truth bounding boxes respectively

and yi represents the true class label of the ith object

proposal.

Classification loss: This loss deals with both seen

and unseen classes. It comprises of a max-margin loss

(Lmm) and a meta-class clustering loss (Lmc):

Lcls(oi, yi) = λLmm(oi, yi) + (1− λ)Lmc(oi, g(yi)),

(4)

where, hyper-parameter λ controls the trade-off between

two losses. We fix it by performing traditionally seen

object detection task. We have used the validation set

of ILSVRC detection dataset for this. We define,

Lmm(oi, yi) =
1

|C′ \ yi|
∑

c∈C′\yi

log
(

1 + exp(oc − oyi)
)
,

Lmc(oi, g(yi)) =
1

|M′′||Z|
∑
c∈M′′

∑
j∈Z

log
(

1 + exp(oc − oj)
)
,

where, sets M′′ = {M′ \ zg(yi)} and Z = {zg(yi)}, ok
represent the prediction response of class k ∈ S. Lmm
tries to separate the prediction response of the true

class from rest of the classes. In contrast, Lmc pulls the

classes belonging to different meta-classes further apart

and (implicitly) tries to cluster together the members

of each super-class. The benefit of using super-classes

in our approach is two-fold. First, our Lmc loss uti-

lizes the super-class definition to cluster similar classes

together. This helps in identifying visual instances of

unseen classes by relating them with the similar seen

classes. In this way, the super-class definition is useful

specifically for ZSD, where semantic relationships are

very helpful to make sense of the unseen classes. Sec-

ond, the super-class definition helps us define additional

auxiliary tasks such as ZSMT and ZSMD that can shed

light on which particular aspects of the ZSD problem

are more challenging (i.e., localization or recognition).

We illustrate the effect of clustering loss on the learned

embeddings in Fig. 3. The use of Lmc enables us to

cluster semantically similar classes together which re-

sults in improved embeddings in the semantic space.

For example, all animal-related meta-classes are close

together, whereas food and vehicle are far apart. Such

a clear separation in semantic space helps in obtain-

ing a better ZSD performance. Moreover, meta-class

based clustering loss does not harm fine-grained de-

tection because the hyper-parameter λ is used to put

more emphasis on the max-margin loss (Lmm) as com-

pared to the clustering part (Lmc) of the overall loss

(Lcls). Still, the clustering loss provides enough guid-

ance to the noisy semantic embeddings (e.g., unsuper-

vised w2v/glove) such that similar classes are clustered

together as illustrated in Fig. 3. Note that w2v/glove

try to place similar words nearby with respect to mil-

lions of text corpus, it is therefore not fine-tuned for

just 200 class recognition setting.

Regression loss: This part of the loss fine-tunes

the bounding box for each seen class ROI. For each fi,

we get 4 × S values representing 4 parameterized co-

ordinates of the bounding box of each object instance.

The regression loss is calculated based on these co-

ordinates and parameterized ground truth co-ordinates.

During training, no bounding box prediction is done for

background and unseen classes due to unavailability of

visual examples. As an alternate approach, we approx-

imate the bounding box for an unseen object through

the box proposal for a closely related seen object that

achieves maximum response. This is a reasonable ap-

proximation because visual features of unseen classes

are related to that of similar seen classes.

Prediction: We normalize each output prediction

value of classification branch using ôc = oc
‖vc‖2‖f t‖2 . It

basically calculates the cosine similarity between mod-

ified word vectors and image features. This normaliza-

tion maps the prediction values within 0 to 1 range. We

classify an object proposal as background if maximum

responds among ôc where c ∈ C′ belongs to ybg. Oth-

erwise, we detect an object proposal as unseen object
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if its maximum prediction response among ôu where

u ∈ U is above a threshold α.

yu = arg max
u∈U

ôu s.t., ôu > α. (5)

The other detection branch finds bi which is the set

of parameterized co-ordinates of bounding boxes for S

seen classes. Among them, we choose a bounding box

corresponding to the class having the maximum predic-

tion response in ôs where s ∈ S for the classified unseen

class yu. For the tagging tasks, we simply use the map-

ping function g(.) to assign a meta-class for any unseen

label.

4.3 ZSD without Pre-defined Unseen

While applying clustering loss in Sec. 4.2, the meta-

class assignment adds high-level supervision in the se-

mantic space. While doing this assignment, we consider

both seen and unseen classes. Similarly, the max-margin

loss considers the set C′ that has both seen and unseen

classes. This problem setting helps to identify the clus-

tering structure of the semantic embeddings to address

domain adaptation for zero-shot detection. However,

in several practical scenarios, unseen classes may not

be known during training. Here, we report a simplified

variant of our approach to train the proposed network

without pre-defined unseen classes.

For this problem setting, we use only seen+bg word

vectors (instead of seen+unseen+bg vectors) as the fixed

embedding W2 ∈ Rd×(S+1) to train the whole frame-

work with only the max-margin loss, L′mm, defined as

follows:

L′mm(oi, yi) =
1

|S ′ \ yi|
∑

c∈S′\yi

log
(

1 + exp(oc − oyi)
)
.

Since the output classification layer cannot make pre-

dictions for unseen classes, we apply a procedure similar

to ConSE during the testing phase [36]. Here, the choice

of [36] is made due to two main reasons: (a) In contrast

to other ZSL methods which train separate models for

each class [6,43], ConSE can work on the prediction

score of a single model. (b) It is straight-forward to ex-

tend a single network to ZSD using ConSE, since [36]

uses semantic embeddings only during the test phase.

Suppose, for an object proposal, vector o ∈ RS+1

contains final probability values of only seen classes and

background. As described earlier, we ignore an object

proposal if the background gets highest score. For other

cases, we sort the vector o in descending order to com-

pute a list of indices l and the sorted list ô:

ô, l = sort(o) s.t., oj = ôlj . (6)

Then, top K score values (s.t., K ≤ S) from ô are

combined with their corresponding word vectors using

the equation: ei =
∑K
k=1 ôkvlk . We consider ei to be

a semantic space projection of an object proposal that

is a combination of word vectors weighted by top K

seen class probabilities. The final prediction is made by

finding the maximum cosine similarity among ei and

all unseen word vectors,

yu = arg max
u∈U

cos(ei,vu).

In this paper, we use K = 10 as proposed in [36]. For

bounding box detection, we choose the box for which

corresponding seen class gets maximum score.

5 Experiments

5.1 Dataset and Experiment Protocol

Dataset: We evaluate our approach on the standard

ILSVRC-2017 detection dataset [48]. This dataset con-

tains 200 object categories. For training, it includes

456,567 images and 478,807 bounding box annotations

around object instances. The validation dataset con-

tains 20,121 images fully annotated with the 200 ob-

ject categories which include 55,502 object instances. A

category hierarchy has been defined in [48], where some

objects have multiple parents. Since, we also evaluate

our approach on meta-class detection and tagging, we

define a single parent for each category.

Seen/unseen split: We propose a challenging ZSD

protocol (seen/unseen splits) for ILSVRC-2017 detec-

tion dataset. Among 200 object categories, we randomly

select 23 categories as unseen and rest of the 177 cate-

gories are considered as seen. This split is designed to

follow the following practical considerations: (a) unseen

classes are rare, (b) test categories should be diverse,

(c) the unseen classes should be semantically similar

with at least some of the seen classes. The details on

how we meet these considerations are provided below.

Meta-class assignment: The classes of ILSVRC

detection dataset maintain a defined hierarchy [48]. How-

ever, this hierarchy does not follow a tree structure. In

this paper, we choose a total of M = 14 meta-classes

(including person), in which the 200 object classes are

divided. Table 1 describes meta-class assignment of all

200 classes. This assignment mostly follows the hierar-

chy of question prescribed in the original paper [48].

Few notable exceptions are (1) the classes of first-aid/

medical items, cosmetics, carpentry items, school sup-

plies and bag are grouped as indoor accessory, (2) liq-

uid container related classes are merged with kitchen
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ID Metaclass Categories

1
Indoor

Accessory (25)

axe, backpack, band aid, binder, chain saw, cream, crutch, face-powder, hairspray,
hammer, lipstick, nail, neck-brace, pencilbox, pencilsharpener, perfume, plastic-bag,
power-drill, purse, rubber-eraser, ruler, screwdriver, stethoscope, stretcher, syringe

2 Musical (17)
accordion, banjo, cello, chime, drum, flute, french-horn, guitar, harmonica, harp,

maraca, oboe, piano, saxophone, trombone, trumpet, violin

3 Food (21)
apple, artichoke, bagel, banana, bell-pepper, burrito, cucumber, fig, guacamole,
hamburger, head-cabbage, hotdog, lemon, mushroom, orange, pineapple, pizza,

pomegranate, popsicle, pretzel, strawberry

4 Electronics (16)
computer-keyboard,computer-mouse, digital-clock, electric-fan, hair-dryer, iPod,

lamp, laptop, microphone, printer, remote-control, tape-player, traffic-light,
tv or monitor, vacuum, washer

5 Appliance (7) coffee-maker, dishwasher, microwave, refrigerator, stove, toaster, waffle-iron

6
Kitchen

item
(17)

beaker, bowl, can-opener, cocktail-shaker, corkscrew, cup or mug, frying-pan, ladle,
milk-can, pitcher, plate-rack, salt or pepper shaker, soap-dispenser, spatula strainer,

water-bottle, wine-bottle
7 Furniture (8) baby-bed, bench, bookshelf,chair, filing-cabinet, flower-pot, sofa, table

8 Clothing (11)
bathing-cap, bow-tie, brassiere, diaper, hat with a wide brim, helmet, maillot,

miniskirt, sunglasses, swimming-trunks, tie

9
Invertebrate

animal
(14)

ant, bee, butterfly, centipede, dragonfly, goldfish, isopod, jellyfish, ladybug, lobster,
scorpion, snail, starfish, tick

10
mammal
animal

(28)
antelope, armadillo, bear, camel, cattle, dog, domestic-cat, elephant, fox, giant-panda,
hamster,hippopotamus, horse, koala-bear, lion, monkey, otter, porcupine, rabbit,

red-panda, seal, sheep, skunk, squirrel, swine, tiger, whale, zebra

11
non-mammal

animal
(6) bird, frog, lizard, ray, snake, turtle

12 Vehicle(12)
airplane, bicycle, bus, car, cart, golfcart, motorcycle, snowmobile, snowplow,

train, unicycle, watercraft

13 Sports (17)
balance-beam, baseball, basketball, bow, croquet-ball, dumbbell, golf-ball,

horizontal-bar, ping-pong-ball, puck, punching-bag, racket, rugby-ball, ski, soccer-ball,
tennis-ball, volleyball

14 Person (1) person

Table 1: Assigned meta-class to each of the 200 object categories. The unseen classes are presented as bold.

items, (3) flower pot is considered as furniture simi-

lar to MicroSoft COCO super-categories [30], (4) All

living organisms (other than people) related classes are

grouped into three different meta-class categories based

on their similarity in word vector embedding space:

invertebrate, mammal and non-mammal animal. Al-

though one can argue that all invertebrate are non-

mammal, this is just an assignment definition we apply

in this paper to obtain a uniform distribution of images

across super-classes.

Train/test set: A zero-shot setting does not allow

any visual example of an unseen class during training.

Therefore, we customize the training set of ILSVRC

such that images containing any unseen instance are

removed. This results in a total of 315,731 training im-

ages with 449,469 annotated bounding boxes. For test-

ing, the traditional zero-shot recognition setting is used

which considers only unseen classes. As the test set an-

notations are not available to us, we cannot separate

unseen classes for evaluation. Therefore, our test set is

composed of the left out data from ILSVRC training

dataset plus validation images having at least one un-

seen bounding box. The resulting test set has 19,008

images and 19,931 bounding boxes.

Since the unseen classes are rare in real life set-

tings and therefore their images are hard to collect,

we assume that the training set only contains frequent

classes. For ILSVRC detection dataset, number of in-

stances per class follows a long-tail distribution (Figure

5). For each of our defined meta-class categories, we first

plot the instance distribution of the child classes like

Figure 4. Then, we randomly select one or two classes

(depending on the number of child classes) from the

rare second half of the distribution. We choose two un-

seen classes from the meta-classes which have relatively

large (9 or more) number of child classes. In contrast,

we choose one class as unseen for the meta-classes hav-

ing less number of child classes. The only exception is

that we do not choose ‘Person’ meta-class as unseen be-

cause it has no similar child class. This random selection

procedure avoids biasness, ensures diversity (due to se-

lection from all meta-classes), semantic similarity with

seen (due to presence of multiple seen classes in each

meta-category) and conforms to the fact that unseen

classes are not the frequent ones.
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Fig. 4: Distribution of instances per classes within each meta class. Two most common (frequent) seen classes

and unseen classes are marked in white and black color text respectively. Red dashed line indicates 50 percentile

boundary. All unseen classes lie within the rarest half of the instance distribution.

Fig. 5: Long-tail distribution of imageNet dataset

Semantic embedding: Traditionally ZSL meth-

ods report performance on both supervised attributes

and unsupervised word2vec/glove as semantic embed-

dings. As manually labeled supervised attributes are

hard to obtain, only small-scale datasets with these

annotations are available [12,23]. ILSVRC-2017 detec-

tion dataset used in the current work is quite huge and

does not provide attribute annotations. In this paper,

we work on `2 normalized 500 and 300 dimensional

unsupervised word2vec [33] and GloVe [38] vector re-

spectively to describe the classes. These word vectors

are obtained by training on several billion words from

Wikipedia dump corpus.

Evaluation Metric: We report average precision

(AP) of individual unseen classes and mean average

precision (mAP) for the overall performance of unseen

classes.

Implementation Details: Unlike Faster-RCNN,

our first step is trained in one step: after initializing

shared layer with pre-trained weights, RPN and detec-

tion network of Fast-RCNN layers are learned together.

Some other settings includes rescaling shorter size of

image as 600 pixels, RPN stride = 16, three anchor

box scale 128, 256 and 512 pixels, three aspect ratios

1:1, 1:2 and 2:1, non-maximum suppression (NMS) on

proposals class probability with IoU threshold = 0.7.

Each mini-batch is obtained from a single image hav-

ing 16 positive and 16 negative (background) proposals.

Adam optimizer with learning rate 10−5, β1 = 0.9 and

β2 = 0.999 is used in both stages of training. First step

is trained over 10 million mini-batches without any data

augmentation, but data augmentation through repeti-

tion of object proposals is used in second step. During

testing, the prediction score threshold was 0.1 for base-

line and Ours (with L′mm) and 0.2 for clustering method

(Ours with Lcls). We implement our model in Keras.

Data Augmentation: We visualize the long-tail

distribution of ILSVRC detection classes in Figure 5.

One can find that only 11 highly frequent classes (out

of 200) cover top 50% of the distribution. This distri-

bution creates a significant impact on ZSD. To address

this problem, in the second step of training, we augment

the less frequent data to make a balance among simi-
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Network
ZSD ZSMD ZST ZSMT

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

R+w2v 12.7 15.0 16.0 13.7 15.4 15.4 23.3 27.5 30.0 28.8 33.4 39.3
R+glo 12.0 12.3 14.6 12.9 14.1 16.1 22.3 24.5 26.2 29.2 31.5 36.3
V+w2v 10.2 12.7 11.8 11.4 12.5 11.8 23.3 25.6 26.2 29.0 31.3 36.0
V+glo 9.0 10.8 11.6 9.7 11.3 11.8 20.3 22.9 23.9 27.3 29.2 34.2

Table 2: mAP of the unseen classes of ILSVRC-2017 detection dataset. Ours (with L′mm) and Ours (with Lcls)

denote the performance without predefined unseen and with cluster loss respectively (Sec. 4.3 and Sec. 4.2) . For

cluster case, λ = 0.8.

O
V
E
R
A
L
L

p
.b

o
x

sy
ri

n
g
e

h
a
rm

o
n

ic
a

m
a
ra

ca

b
u

rr
it

o

p
in

ea
p

p
le

b
o
w

ti
e

s.
tr

u
n

k

d
.w

a
sh

er

ca
n

o
p

en
er

p
.r

a
ck

b
en

ch

e.
fa

n

iP
o
d

sc
o
rp

io
n

sn
a
il

h
a
m

st
er

ti
g
er

ra
y

tr
a
in

u
n

ic
y
cl

e

g
o
lf

b
a
ll

h
.b

a
r

Similar classes NOT present Similar classes present
ZSD Baseline = 6.3, Ours (L′

mm) = 6.5, Ours (Lcls) = 4.4 ZSD Baseline = 18.6, Ours (L′
mm) = 22.7, Ours (Lcls) = 27.4

Zero-Shot Detection (ZSD)
Baseline 12.7 0.0 3.9 0.5 0.0 36.3 2.7 1.8 1.7 12.2 2.7 7.0 1.0 0.6 22.0 19.0 1.9 40.9 75.3 0.3 28.4 17.9 12.0 4.0

Ours (L′
mm) 15.0 0.0 8.0 0.2 0.2 39.2 2.3 1.9 3.2 11.7 4.8 0.0 0.0 7.1 23.3 25.7 5.0 50.5 75.3 0.0 44.8 7.8 28.9 4.5

Ours (Lcls) 16.4 5.6 1.0 0.1 0.0 27.8 1.7 1.5 1.6 7.2 2.2 0.0 4.1 5.3 26.7 65.6 4.0 47.3 71.5 21.5 51.1 3.7 26.2 1.2
Zero-Shot Tagging (ZST)

Baseline 23.3 2.9 13.4 9.6 3.1 61.7 20.7 16.3 7.5 29.4 8.6 12.2 8.5 4.9 46.2 30.7 11.0 51.8 77.6 9.0 46.1 39.0 12.7 12.6
Ours (L′

mm) 27.5 2.9 20.8 10.5 3.3 72.5 27.7 16.7 7.9 22.9 14.3 2.8 6.7 14.5 46.8 42.6 16.0 59.1 80.0 12.9 67.3 34.1 34.0 17.1
Ours (Lcls) 30.6 12.6 10.2 11.9 4.9 48.9 21.8 17.9 29.1 32.2 10.0 4.1 20.7 10.7 52.2 82.6 12.3 58.5 75.5 48.9 72.2 16.9 33.9 15.5

Meta-class Indoor Musical Food Clothing Appli. Kitchen Furn. Electronic Invertebra. Mammal Fish Vehicle Sport
Zero-Shot Meta Detection (ZSMD)

Baseline 13.7 3.3 0.3 24.0 4.0 12.2 2.1 1.0 12.1 17.0 70.7 0.3 22.1 8.5
Ours (L′

mm) 15.4 8.1 0.1 18.4 2.3 11.7 3.0 0.0 14.3 27.8 73.6 0.0 32.1 9.0
Ours (Lcls) 15.6 3.5 0.1 10.0 1.9 7.2 1.2 4.1 15.3 31.4 66.8 21.5 31.2 9.3

Zero-Shot Meta-class Tagging (ZSMT)
Baseline 28.8 15.2 12.0 55.6 25.2 29.4 10.7 8.5 31.5 36.5 75.8 9.0 48.4 17.0

Ours (L′
mm) 33.4 24.1 13.6 55.9 31.3 22.9 14.7 6.7 33.0 49.4 82.6 12.9 64.2 23.2

Ours (Lcls) 39.9 19.2 15.5 45.6 38.5 32.2 12.4 20.7 40.3 58.2 84.8 48.9 74.7 27.1

Table 3: Average precision of individual unseen classes of ILSVRC-2017 detection dataset using ResNet+w2v and

loss configurations L′mm and Lcls (cluster based loss with λ = 0.6). We have grouped unseen classes into two

groups based on whether visually similar classes present in the seen class set or not. Our proposed method achieve

significant performance improvement for the group where similar classes are present in the seen set.

lar seen classes for each unseen category. From the 10

million mini-batches used at the first stage of training,

we create a set of over 2.8 million mini-batches for the

second stage training. While creating this set, we make

sure that every unseen class gets at least 10K similar

(positive) instances from classes whose meta-class cat-

egory is common to that of unseen class. In doing so,

for some unseen classes like ‘ray’, we need to randomly

augment data by repetition because the total instances

of classes in the meta-class ‘non-mammal animal’ are

not more than 10K. In contrast, the unseen class like

‘tiger’ has more than 10K similar instances in ‘mammal

animal’ meta-class. Therefore, we randomly pick 10K

among those to balance the training set. After this, the

rest of instances of 2.8 million mini-batches are chosen

as the background.

Comparison methods: Here, we discuss different

variants of our approach used for comparison in this pa-

per. For all methods, we use the same inference strategy

mentioned in Sec. 4.2.

– Baseline: We train an original Faster-RCNN [46] ar-

chitecture with all seen data but without any word

vectors. In this approach, we can still get a vector

o ∈ RS+1 from the classification layer of Faster-

RCNN network that is used in inference. The details

are given in Sec. 4.3.

– Ours (L′mm): It uses our proposed architecture with

word vectors as mentioned in Fig. 2. We train the

network with the loss L′mm discussed in Sec. 4.3.

This approach does not use unseen word vectors and

meta-class annotation.

– Ours (Lcls): This approach is same as Ours (L′mm)

but the training uses the loss Lcls discussed in Sec.

4.2. It takes advantage of unseen word vectors and

meta-class annotation.

5.2 ZSD Performance on ILSVRC-2017 detection

We use two different architectures i.e., VGG-16 (V) [51]

and ResNet-50 (R) [16] as the backbone of the Faster-
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RCNN during the first training step. In second step,

we experiment with both Word2vec and GloVe as the

semantic embedding vectors used to define W2. Fig. 7

illustrates some qualitative ZSD examples.

Overall results: Table 2 reports the mAP for all

approaches on four tasks: ZSD, ZSMD, ZST, and ZSMT

across different combinations of network architectures.

We can make following observations: (1) Our cluster

based method outperforms other competitors on all four

tasks because its loss utilizes high-level semantic re-

lationships from meta-class definitions which are not

present in other methods. (2) Performances get im-

proved from baseline to Ours (with L′mm) across all

zero-shot tasks. The reason is baseline method did not

consider word vectors during the training. Thus, overall

detection could not get enough supervision about the

semantic embeddings of classes. In contrast, L′mm loss

formulation considers word vectors. Other than V+w2v

case, Lcls achieves a higher mAP than L′mm because

Lcls considers both unseen semantics and meta-class

information during training. Only for V+w2v case, the

performance goes down from L′mm to Lcls. This trend is

likely due to the relatively higher noise in the w2v com-

pared to GloVe, since even for R+w2v, the performance

gain from L′mm to Lcls is not huge. (3) Performances

get improved from ZST to ZSMT across all methods

whereas similar improvement is not common from ZSD

to ZSMD. It’s not surprising because ZSMD can get

some benefit if meta-class of the predicted class is same

as the meta-class of true class. If this is violated fre-

quently, we cannot expect significant performance im-

provement in ZSMD. Moreover, the small performance

improvement from ZSD to ZSMD in comparison to ZST

to ZSMT shows that the correct localization of unseen

classes is a more challenging problem as compared to

their recognition (that is targetted in a multi-class la-

beling problem, i.e., ZST and ZSMT). (4) In compari-

son of traditional object detection results, ZSD achieved

significantly lower performance. Remarkably, even the

state-of-the-art zero-shot classification approaches per-

form quite low e.g., a recent ZSL method [64] reported

11% hit@1 rate on ILSVRC 2010/12. This trend does

not undermine to significance of ZSD, rather highlights

the underlying challenges.

Individual class detection: Performances of in-

dividual unseen classes indicate the challenges for ZSD.

In Table 3, we show performances of individual unseen

classes across all tasks with our best (R+w2v) network.

We observe that the unseen classes for which visually

similar classes are present in their meta-classes achieve

better detection performance (ZSD mAP 18.6, 22.7,

27.4) than those which do not have similar classes (ZSD

mAP 6.3, 6.5, 4.4) for the all methods (baseline, our’s
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Fig. 6: Effect of varying λ in different zero-shot tasks

for ResNet+w2v (left) and ResNet+glo (right).

with L′mm and Lcls). Our proposed cluster method with

loss Lcls outperforms the other versions significantly for

the case when visually similar classes are present. For

the all classes, our cluster method is still the best (mAP:

cluster 16.4 vs. baseline 12.7). However, our’s with L′mm
method performs better for when similar classes are not

present (mAP 6.5 vs 4.4) because meta-class annotation

could not provide sufficient supervision due to visual

dissimilarity within the same superclass. The perfor-

mances for some of the classes in the “Similar classes

present” category are like the classes in the “Similar

classes NOT present category” because those similar

classes may not have sufficient instances in the training

dataset to correctly relate seen to unseen. For example,

unseen ‘horizontal bar’ has a small number of similar in-

stances like seen ‘balance beam’ in the training dataset

compared to unseen ‘train’ and seen ‘bus’.

For the easier tagging tasks (ZST and ZSMT), the

cluster method gets superior performance in most of

the cases. This indicates that one potential reason for

the failure cases of our cluster method for ZSD might

be confusions during localization of objects due to am-

biguities in visual appearance of unseen classes. Such

ambiguities can happen because of object size, orienta-

tion, image clutter which make an object different from

the description within the word vectors. As an example,

we refer to Figure 8, where bounding boxes are incor-

rectly detected, although the class labels are present in

the image.

Varying λ: The hyperparameter λ controls the weight

between Lmm and Lmc in Lcls. In Fig. 6, we illus-

trate the effect of varying λ on four zero-shot tasks for

R+w2v and R+glo. It shows that performances has less

variation in the range of λ = .5 to .9 than λ = .9 to 1.

For a larger λ, mAP starts dropping since the impact of

Lmc decreases significantly. Low values of λ (i.e., λ < .5)

are not reported as they lead to low emphasis on max-

margin loss, resulting in somewhat lower performance.
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More ablation studies: In Table 4, we compare

our methods with different experimental settings. (1)

No pre-trained model: This experiment does not use

any pre-trained model. For this case, we use the train-

ing set of the proposed ImageNet-ZSD dataset and train

with the max-margin loss L′mm. We obtain mAP = 5.4.

Note that the training was done for the same number

of iterations as before, i.e., with 10 million mini-batches

having one image per mini-batch (equivalent to 7 days

training with a single GPU). One possible reason of

low performance is that the network is not fully con-

verged within these iterations. However, given a single

GPU available to us, training a network on ImageNet

DEC from scratch would take much longer which is

not a feasible solution. Therefore, we opted for back-

bone initialization with a pre-trained network, which

significantly accelerates the network convergence rate,

making it feasible within the available computational

budget. Furthermore, the ILSVRC detection dataset

has less number of images than ILSVRC recognition

and the exclusion of unseen images further reduces the

data available for training. These two factors contribute

towards a relatively lower performance mark for the

model trained without pre-trained backbone. (2) Ex-

cluding overlapped unseen classes from the pre-trained

model: In a recent study, [56] showed that such over-

lap of unseen classes introduces significant bias in the

recognition performance. We empirically evaluate this

bias in the detection case for the first time. We get an

mAP of 12.7 (compared to previous mAP of 15.0) af-

ter excluding all overlapping unseen classes from the

backbone pre-training. This shows that the existence

of an overlap in the backbone can lead to higher results

in the detection setting, similar to the case observed

in recognition. This is despite the fact that pre-trained

weights are subsequently updated based on only seen

instances and later based on word vectors with our pro-

posed loss. However, note that this choice of ImageNet

pretrained backbone was made to be consistent with

the competitive approaches [5,8] and the exact same

setting is used in our baseline for fairness. (3) Softmax:

As the standard choice for classification is to train the

network with a softmax cross-entropy loss, in this ex-

periment, we replace our max-margin loss with softmax

loss. We get an mAP = 13.8 whereas with max-margin

loss the mAP = 15.0. In both cases, unseen classes are

not pre-defined during training. It tells that our pro-

posed max-margin loss is better suited in ZSD settings

because it can align features and semantics in a better

way. In contrast, softmax loss tries to align feature and

its true semantics but does not maximize the separation

of the true class from rest of the classes. (4) `2 normal-

ization: The word vector model can generate a vector

Method
No No No Softmax

Ours
pre-training overlap `2 norm loss

mAP 5.4 12.7 10.9 13.8 15.0

Table 4: (left to right) Performance comparison when

no pretrained model is used, no overlap of unseen with

pretrained classes exists, without using `2 normaliza-

tion on word vectors, applying softmax cross-entropy

loss and our method.

Class Seen (177) Unseen (23) All (200)
accuracy 47.1 49.5 47.3

Table 5: The unseen object proposal quality and its

comparison with seen classes.

of millions of words. But, we only use a small subset

of it, which are the names of detection classes. We ap-

ply `2 normalization on this small subset to make zero

mean and unit standard deviation. Using this step, we

achieve a better performance than without performing

this step (10.9 vs. 15.0).

Unseen proposal quality: The RPN within our

model generates object proposals that are later used for

classification. Although the RPN is trained with only

seen instances, it can localize both seen and unseen ob-

jects. This is because the RPN is trained in a class ag-

nostic manner. RPN predicts an objectness score and

bounding box regression parameters for each anchor

box. During this learning process, the RPN goal is to

maximize the overlap between ground-truth bounding
boxes and pre-defined anchor boxes. Since no class in-

formation is used, RPN learns what qualifies an object

in general. Thus, irrespective of an object class, RPN

can provide object proposals. In this experiment, we at-

tempt to assess the quality of object proposals found by

RPN. Given an image as input, RPN is set to provide

a maximum of 100 proposals. Then, we apply NMS on

those proposals to remove highly overlapping propos-

als. For each ground-truth bounding box in an input

image, we calculate IoU with all proposals. If any of the

ground-truth boxes get a suitable match with IoU ≥ .5,

we consider that the box is correctly localized. In this

way, we calculate the percentage of correctly localized

ground truth box for each class. In Table 5, we report

this percentage for 177 seen and 23 unseen and all 200

classes. It shows that RPN is successful in covering a

significant amount of seen and unseen bounding boxes.

Here, because of the different ratio and frequency of

seen and unseen objects, the unseen class percentage

becomes higher than seen.



Zero-Shot Object Detection: Joint Recognition and Localization of Novel Concepts 15

Method ZSD
GZSD

Seen Unseen HM
mAP/RE mAP/RE mAP/RE mAP/RE

LAB [5] 0.27/20.52 - - -
SB [5] 0.70/24.39 - - -

DSES [5] 0.54/27.19 -/15.02 -/15.32 -/15.17
Ours 5.05/12.27 13.93/20.42 2.55/12.42 4.31/15.45

Table 6: Performance on ZSD and GZSD tasks on

MSCOCO dataset.

Method pullover dress ankle-boot mean
Demirel et al. [8] 49.0 49.0 95.0 64.9

Ours 70.4 58.6 99.6 76.2

Table 7: Performance on ZSD tasks on Fashion-ZSD

Dataset

5.3 ZSD on MS-COCO

Recently, Bansal et al. [5] proposed a seen/unseen split

on MS-COCO (2014) dataset for evaluating zero-shot

object detection. Out of total 80 classes they used 48

and 17 classes for seen and unseen respectively. This

setting considers 73, 774 images containing seen objects

and 6, 608 images for testing unseen objects. In this pa-

per, we adopt this setting to compare our method with

[5]. In Table 6, we report both ZSD and GZSD perfor-

mances on mAP and Recall@100 based evaluation. For

fair comparison, our results are based on only Lmm,

i.e., using λ = 1 so that the training do not have access

about the unseen knowledge. For ZSD task, with mAP

our method beats LAB, DSES and SB [5] with a large

margin (5.05 vs. 0.27, 0.54 and 0.70). However, with

Recall@100, we notice an opposite trend. Although [5]

proposed Recall@100 to evaluate ZSD, we argue that

this metric is sub-optimal because it does not penalize

for wrong bounding box detections by a model3. For

GZSD, our method successfully outperforms DSES [5]

in Recall measure. However, we support ZSD evalua-

tions based on mAP measure similar to the traditional

object detection problem since it is a more comprehen-

sive evaluation measure.

5.4 ZSD on Fashion-MNIST

Demirel et al. [8] generate a toy dataset for ZSD based

on Fashion-MNIST [60]. This dataset includes three ob-

jects per image to make it suitable for multi-object de-

tection. Moreover, to increase the task complexity, some

generated images contain randomly cropped objects as

3 Although, we acknowledge that Recall@100 stays an ap-
propriate measure for large-scale datasets that are not fully
labeled (such as Visual Genome-see Sec. 5.5).

Method SB [5] DSES [5] LAB [5] Ours
Recall 4.09 4.75 5.40 2.02

Table 8: Performance on ZSD task on Visual Genome

dataset.

clutter. They use 7 seen and 3 unseen classes and 8.3k,

8k and 8k images for training, validation and testing,

respectively. In Table 7, we adopt their settings to com-

pare our ZSD method with [8]. The results show that

our proposed approach performs favorably well against

[8]. Note that, we do not use pre-defined unseen in this

experiment.

5.5 ZSD on Visual Genome (VG)

In Table 8, we perform experiments with VG dataset

[22] using Bansal et al. settings [5]. Our performance

with max-margin loss in terms of recall@100 is 2.02,

whereas [5] reports 5.4 in the same setting. We believe

one possible reason of this performance gap is that our

approach considers relatively less number of bounding

box proposals as compared to [5]. Since the average

number of instances per image is very high for VG

dataset 21.24 (MSCOCO has 7.7), considering a large

number of proposals per image is useful during training

on VG. However, our Faster-RCNN based model runs

in an end-to-end manner on a single GPU, putting a re-

striction on the number of proposals (only 32 bounding

boxes per image are considred in our case). In contrast,

[5] used an off-line bounding box predictor (based on

Edge-box proposals), which allows them to consider a

significantly large number of proposals per image. Addi-

tionally, [5] is a background-aware approach. Instead of

one general background class, their LAB variant con-

siders an extensive number of 1673 classes (those are

neither seen nor unseen) as the background, which may

have been a contributing factor for their approach on

the VG dataset. Therefore, as a future work, one can

consider combining such a background-aware approach,

together with the proposed Faster-RCNN model to fur-

ther improve ZSD performance on VG dataset.

5.6 ZSD on CUB

We evaluate the ZSD performance of the baseline and

our proposed method based on a single bounding box

per image provided in CUB dataset [53]. Table 9 de-

scribes the performance comparison between the base-

line and our basic method. Our overall loss (Lcls) based

method outperforms the baseline in the different net-

work and semantic settings. Note that, we do not define



16 Shafin Rahman et al.

Fig. 7: Selected examples of ZSD of our cluster (λ = .6) method with R+w2v, using the prediction score threshold

= 0.3. The numbers represents the prediction scores in percent. Images are from ILSVRC-2017 detection dataset

any meta-class for the CUB classes. Therefore, we use

λ = 1 for CUB related experiments.

5.7 Zero Shot Recognition on CUB

Being a detection model, the proposed network can also

perform traditional Zero Shot Recognition (ZSR). We

evaluate ZSR performance on popular Caltech-UCSD

Birds-200-2011 (CUB) dataset [53]. This dataset con-

tains 11,788 images from 200 classes and provides a sin-

gle bounding box per image. Following standard train/test

split [56], we use 150 seen and 50 unseen classes for

experiments. For semantics embedding, we use 400-d

word2vec (w2v) and GloVe (glo) vector [55]. Note that,

we do not use per image part annotation (like [1]) and

descriptions (like [64]) to enrich semantic embedding.

For a given test image, our network predicts unseen

class bounding boxes. We pick only one label with the

highest prediction score per image. In this way, we re-

port the mean Top1 accuracy of all unseen classes in

Table 10. We find our proposed solution achieves a

significant improvement in performance compared to

state-of-the-art methods.

mAP Network w2v glo
Baseline R 31.0 26.7

Our (Lcls) R 33.5 32.3
Baseline V 30.3 27.9

Our (Lcls) V 30.4 28.4

Table 9: ZSD on CUB using λ = 1. We refer V=VGG

and R=ResNet

Top1 Accuracy Network w2v glo
Akata’16 [1] V 33.90 -

DMaP-I’17[27] G+V 26.38 30.34
SCoRe’17[35] G 31.51 -
Akata’15 [3] G 28.40 24.20

LATEM’16 [55] G 31.80 32.50
DMaP-I’17 [27] G 26.28 23.69

Ours R 36.77 36.82

Table 10: Zero shot recognition on CUB using λ = 1 be-

cause no meta-class assignment is done here. For fair-

ness, we only compared our result with the inductive

setting of other methods without per image part anno-

tation and description. We refer V=VGG, R=ResNet,

G=GoogLeNet.
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Fig. 8: Examples of incorrect detection but correct classification. The unseen class ‘bow-tie’, ‘pineapple’ and ‘bench’

are incorrectly localized in these images. . Images are from ILSVRC-2017 detection dataset

Fig. 9: Word cloud based on (a) number of object in-

stance (b) Mean object size in pixel

5.8 Qualitative results

We provide examples of ZSD in Fig. 7 using ILSVRC-

2017 detection dataset. One can find that the prediction

score threshold is lower (0.3 used in the examples) than

the value (greater than 0.5) used in traditional object

detection like faster-RCNN [46]. It indicates that the

prediction of ZSD has less confidence than that of tra-

ditionally seen detection. As zero-shot method does not

observe any training instances of unseen classes during

the whole learning process, the confidence of prediction

cannot be as strong as the seen counterpart. Moreover,

a ZSD method needs to correspond visual features with

semantic word vectors which are generally noisy. This

degrades the overall confidence for ZSD.

In the last layer of the box regression branch, our

method does not have specified bounding boxes for un-

seen classes. Instead, bounding box corresponding to a

closely related seen class that has the maximum score is

used for un-seen localization. Therefore, a correct un-

seen class prediction does not always provide/obtain

very accurate localizations, as illustrated in Fig. 8.

5.9 Discussion

ZSD Challenges: In general, detection is a more diffi-

cult task than recognition/tagging because the bound-

ing box must be located at the same time. The strict

requirement of not using any unseen class images dur-

ing the zero-shot training is a tough enough condition

for recognition/tagging tasks, which is significantly in-

tensified in detection tasks. We have used the ILSVRC-

2017 detection dataset to evaluate some baseline perfor-

mances of the proposed problem. This dataset has 200

classes, including a total of 478,807 object instances of

different shapes/sizes and distributions (see Figure 9).

Within these, we define M = 14 meta classes, which

contain one or more specific classes. Figure 4 describes

the normalized number of instances per class within

each meta class. Considering this challenging dataset,

here we describe some other difficulties of the zero shot

detection task:

– Rarity: The ILSVRC dataset contains a long-tail

distribution issue, i.e., many rare classes have a lower

number of instances. It is apparent that an unseen

class should be within the set of rare classes. To ad-

dress this fact, we randomly choose unseen classes

from each meta-class zj , which lie in the rarest 50%

in the distribution. This affects the zero-shot version

of the problem as well.

– Object size: Some rare object classes, like syringe,

ladybug etc., usually have a small size. Smaller ob-

jects are difficult to detect, as well as recognize.

– High Diversity: Every meta-class has a different num-

ber of classes and there exists a high visual diversity

between meta-class images. Since being in a same

meta-class does not guarantee visual similarity, it

is difficult to learn relationships for the unseen cat-

egories that are quite different from the seen cate-

gories in the same super-class. As an example, ‘tiger’

has more similar classes than ‘ray’. The scarcity of

similar classes produces an inadequate description
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mAP Step 1 Baseline Ours Our
(L′

mm) (Lcls)
Seen 33.7 33.4 27.7 26.1

Unseen (all) - 12.7 15.0 16.4
Unseen (selected) - 18.6 22.7 27.4

Table 11: Comparison of seen and unseen class perfor-

mance using ResNet as convolution layers. word2vec

is used for baseline, our (L′mm) and our (Lcls). Best

performance in each row are shown as bold. We refer

Unseen (all): mAP of all unseen classes, Unseen (se-

lected): mAP of selected classes for which visually sim-

ilar classes are present.

of the unseen class, which eventually affects the zero

shot detection performance.

– Noise in semantic space: We use unsupervised se-

mantic embedding vectors word2vec/GloVe as the

class description. Such embeddings are noisy as they

are generated automatically from unannotated text

mining. This also affects the zero-shot detection per-

formance significantly.

Seen vs. Unseen Class Performance: The over-

all performance of ZSD is dependent on the learning of

seen classes. Therefore, the performance of seen-class

detection can be an indication of how ZSD works. To

this end, we also study the detection performance for

seen classes of the ILSVRC validation dataset after the

first step of faster-RCNN training (Table 11). It in-

dicates the baseline performance of seen classes that

leads to our final ZSD performance on the unseen. The

baseline method result is better than our proposed ap-

proaches. This is justifiable since our proposed methods

generate predictions for both seen and unseen class to-

gether, which somewhat sacrifices the seen performance

to achieve distinction among all seen and unseen classes.

Table 11 also compares the seen result with the unseen

performance. It is found that the performance of se-

lected unseen classes is similar to that of seen classes

for our (Lcls) method. This indicates the balanced gen-

eralization of ZSD in both seen and unseen classes.

Learning without meta-class: For some appli-

cations, the meta-class based supervision may not be

available. In such cases, one can define a meta-class in

an unsupervised manner by applying a clustering mech-

anism on the original semantic embedding.

ZSL vs ZSD loss: Many traditional non-end-to-

end trainable ZSR methods consider different aspects

of regularization [35], transductive setting [27], met-

ric learning [32], domain adaptation [20] and class at-

tribute association [4] etc. Similarly, the end-to-end train-

able ZSR methods [64,25] employ different non-linearities

in feature and semantic pipeline. However, those tradi-

tional loss formulations must be redesigned for ZSD to

be compatible with both classification and box detec-

tion losses.

Future challenges: The ZSD problem warrants fur-

ther investigation. (1) Instead of mapping image fea-

tures to the semantic space, the reverse mapping can

help ZSD as it does for the case of ZSR [21,64]. (2)

ZSD might benefit from fusing different word vectors

(word2vec and GloVe). (3) Like generalized ZSL [61,56,

27], a generalized ZSD setting can be explored, which

represents a more realistic set-up. (4) Moreover, weakly/semi-

supervised version of ZSD/GZSD is also an interesting

direction for further research.

6 Conclusion

While traditional ZSL research focuses only on object

recognition, we propose to extend the problem to ob-

ject detection (ZSD). To this end, we offer a new exper-

imental protocol for the ILSVRC-2017 dataset, specify-

ing the seen-unseen, train-test split. We also develop an

end-to-end trainable CNN model to solve this problem.

Our proposed approach employs a novel loss function

to relate semantic and visual features of seen object

classes with the unseen objects. We show that our so-

lution is better than a strong baseline and recently re-

ported zero-shot detection approaches.

Overall, this research throws several new challenges

to the ZSL community. To make long-standing progress

in ZSL, the community needs to move forward in the de-

tection setting rather than merely recognition. Further-

more, the interesting extensions of ZSD setting, such as

the any-shot detection [42], can lead to more practical

scenarios close to the real-world.
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