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Abstract Inexpensive structured light sensors can

capture rich information from indoor scenes, and scene

labeling problems provide a compelling opportunity to

make use of this information. In this paper we present

a novel Conditional Random Field (CRF) model to ef-

fectively utilize depth information for semantic labeling

of indoor scenes. At the core of the model, we propose

a novel and efficient plane detection algorithm which

is robust to erroneous depth maps. Our CRF formu-

lation defines local, pairwise and higher order interac-

tions between image pixels. At the local level, we pro-

pose a novel scheme to combine energies derived from

appearance, depth and geometry-based cues. The pro-

posed local energy also encodes the location of each

object class by considering the approximate geometry

of a scene. For the pairwise interactions, we learn a
boundary measure which defines the spatial discontinu-

ity of object classes across an image. To model higher-

order interactions, the proposed energy treats smooth

surfaces as cliques and encourages all the pixels on a

surface to take the same label. We show that the pro-

posed higher-order energies can be decomposed into

pairwise sub-modular energies and efficient inference

can be made using the graph-cuts algorithm. We fol-

low a systematic approach which uses structured learn-

ing to fine-tune the model parameters. We rigorously

test our approach on SUN3D and both versions of the

Salman H. Khan, Mohammed Bennamoun, Ferdous Sohel:
School of CSSE, The University of Western Australia, 35 Stir-
ling Highway, Crawley, WA 6009, Australia.
E-mail: {salman.khan, mohammed.bennamoun, ferdous.sohel
}@uwa.edu.au

Roberto Togneri, Imran Naseem:
School of EECE, The University of Western Australia, 35
Stirling Highway, Crawley, WA 6009, Australia.
E-mail: roberto.togneri@uwa.edu.au

NYU-Depth database. Experimental results show that

our work achieves superior performance to state-of-the-

art scene labeling techniques.
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1 Introduction

The main goal of scene understanding is to equip ma-

chines with human-like visual interpretation and com-

prehension capabilities. A fundamental task in this pro-

cess is that of scene labeling, which is also well-known as

scene parsing. In this task, each of the smallest discrete

elements in an image (pixels or voxels) is assigned a

semantically-meaningful class label. In this manner, the

scene labeling problem unifies the conventional tasks of

object recognition, image segmentation, and multi-label

classification (Farabet et al, 2013). A high-performance

scene labeling framework is useful for the design and

development of context-aware personal assistant sys-

tems, content-based image search engines and domestic

robots, among several other applications.

From a scene-labeling viewpoint, scenes can broadly

be classified into two groups: indoor and outdoor. The

task of indoor scene labeling is relatively difficult in

comparison to its outdoor counterpart (Quattoni and

Torralba, 2009). There are many different types of in-

door scenes (e.g. consider a corridor, a bookstore or

a kitchen), and it is non-trivial to handle them all in

a unified way. Moreover, in contrast to common out-

door scenes, indoor scenes more often contain illumi-

nation variations, clutter and a variety of objects with

imbalanced representations. In many outdoor scenes,

common classes (e.g. ground, sky and vegetation) do
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not exhibit much variability, whereas objects in in-

door scenes can change their appearance significantly

between different images (e.g. a bed may change ap-

pearance due to different bedsheets). Such difficulties

can prove challenging when performing scene label-

ing purely from color (RGB) images. However, with

the advent of consumer-grade sensors such as the Mi-

crosoft Kinect that capture co-registered color (RGB)

and depth (D) images of indoor scenes, a much richer

source of information has become available (Hayat et al,

2015). A number of popular and relevant databases

e.g., NYU-Depth (Silberman and Fergus, 2011), RGBD

Kinect (Lai et al, 2011) and SUN3D (Xiao et al, 2013)

have been acquired using the Kinect sensor. These no-

table efforts have opened the door to the development

of improved schemes for labeling indoor scenes from

RGBD images.

Various recent works have focused on the use of

RGBD images for labeling indoor scenes. Koppula et al

(2011) used KinectFusion (Izadi et al, 2011) to create

a 3D point cloud and then densely labeled it using a

Markov Random Field (MRF) model. Silberman and

Fergus (2011) provided a Kinect-based dataset for in-

door scene labeling and achieved decent semantic la-

beling performance using a Conditional Random Field

(CRF) model with SIFT features and 3D location pri-

ors. Although they showed that depth information has

significant potential to improve scene labeling perfor-

mance, their own work was limited to depth-based fea-

tures and priors, and did not explore the possibilities

of effectively utilising the scene geometry or exploiting

long-range interactions between pixels. In this work, we

develop a novel depth-based geometrical CRF model

to efficiently and effectively incorporate depth informa-

tion in the context of scene labeling. We propose that

depth information can be used to explore the geometric

structure of the scene, which in turn will help with the

scene labeling task. We propose to incorporate depth

information in all the components of our hierarchical

probabilistic model (unary, pairwise and higher-order).

Our model uses both intensity and depth information

for efficient segmentation.

For the purpose of integrating depth information, we

begin with the modification of unary potentials. First,

we incorporate geometric information in the most im-

portant energy of our CRF model, namely the appear-

ance energy. In this local energy, we encode both ap-

pearance and depth-based characteristics in the feature

space. These features are used to predict the local en-

ergies in a discriminative fashion. Note that in general,

man-made environments contain a lot of flat structures,

because they are easier to manufacture than curved

ones. Therefore we extract planes, which are the fun-

damental geometric units of indoor scenes, using a new

smoothness constraint based ‘region growing algorithm’

(see Sec. 5). Compared to other plane detection meth-

ods (e.g., Rabbani et al (2006); Silberman et al (2012)),

our method is robust to large holes which can poten-

tially appear in the Kinect’s depth maps (Sec. 5). The

geometric as well as the appearance based characteris-

tics of these planar patches are used to provide unary

estimates. We propose a novel ‘decision fusion scheme’

to combine the pixel and planar based unary energies.

This scheme first uses a number of contrasting opin-

ion pools and finally combines them using a Bayesian

framework (see Sec. 3.1.1). Next, we consider the loca-

tion based local energy that encodes the possible spatial

locations of all classes. Along with the conventional 2D

location prior, we propose to use the planar regions in

each image to channelize the location energy (see Sec.

3.1.2).

Our approach also incorporates depth information

in the pairwise and higher-order clique potentials. We

propose a novel ‘spatial discontinuation energy’ in the

pairwise smoothness model. This energy combines evi-

dence from several edge detectors (such as depth edges,

contrast based edges and different super-pixel edges)

and learns a balanced combination of these, using a

quadratic cost function minimization procedure based

on the manually segmented images of the training set

(see Sec. 4.1). Finally, we propose a higher-order term

in our CRF model which is defined on cliques that en-

compass planar surfaces. The proposed Higher-Order

Energy (HOE) increases the expressivity of the ran-

dom field model by assimilating the geometrical con-

text. This encourages all pixels inside a planar surface

to take a consistent labeling. We also propose a loga-

rithmic penalty function (see Sec. 3.3) and prove that

the HOE can be decomposed into sub-modular energy

functions (see Appendix A).

To efficiently learn the parameters of our proposed

CRF model, we use a max-margin learning algorithm

which is based on a one-slack formulation (Sec. 4.1).

The rest of the paper is organized as follows. We

discuss related work in the next section and propose

a random field model in Sec. 3. We then outline our

parameter learning procedure in Sec. 4. In Sec. 5, the

details of our proposed geometric modeling approach

are presented. We evaluate and compare our proposed

approach with related methods in Sec. 6 and the paper

finally concludes in Sec. 7.

2 Related Work

The use of range or depth sensors for scene analysis

and understanding is increasing. Recent works employ
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depth information for various purposes e.g., seman-

tic segmentation (Koppula et al, 2011), object grasp-

ing (Rao et al, 2010; Khan et al, 2015), door-opening

(Quigley et al, 2009) and object placement (Jiang et al,

2012). For the case of semantic labeling, works such as

(Silberman and Fergus, 2011; Silberman et al, 2012)

demonstrate the potential depth information has to

help with vision-related tasks. However, they do not go

beyond the depth-based features or priors. In this pa-

per, we show how to incorporate depth information into

the various components of a random field model and

then evaluate the contribution made by each compo-

nent in enhancing semantic labeling performance (Khan

et al, 2014b). Our framework is particularly inspired by

the works on semantic labeling of RGBD data (Silber-

man and Fergus, 2011; Silberman et al, 2012), consid-

ering long-range interactions (Kohli et al, 2009), para-

metric learning (Szummer et al, 2008; Tsochantaridis

et al, 2004) and geometric reconstruction (Rabbani

et al, 2006).

The scene parsing problem has been studied ex-

tensively in recent years. Probabilistic graphical mod-

els, e.g. MRFs and CRFs, have been successfully ap-

plied to model context and provide a consistent labeling

(He et al, 2004; Gould et al, 2009; Lempitsky et al, 2011;

Huang et al, 2011). Some of these methods, e.g. Gould

et al (2009), work on a pixel grid, whilst others perform

inference at the super-pixel level (Huang et al, 2011).

He et al (2004) combined local, regional and global cues

to formulate multi-scale CRFs to address the image

labeling problem. Hierarchical MRFs are employed in

(Ladicky et al, 2009) to perform joint inference on pix-

els and super-pixels. Huang et al (2011) trained their

CRF on separate clusters of similar scenes and used the

clusters with standard CRF to label street images. Sil-

berman and Fergus (2011) showed that when segment-

ing RGBD data, it is possible to achieve better results

by making use of all the available channels (including

depth) than by relying on RGB alone. They used fea-

tures extracted from the depth channel and a 3D loca-

tion prior to incorporate depth information. However,

the question of how to incorporate depth information in

an optimal manner remains unanswered and warrants

further investigation. Moreover, although works such as

(Silberman and Fergus, 2011; Xiong and Huber, 2010)

use depth-based features to enhance segmentation per-

formance, they do not incorporate depth information

into the higher-order components of the CRF.

Another important challenge in scene labeling is

to take account of long-range context in the scene

when making local labeling decisions. Farabet et al

(2013) extracted dense features at a number of scales

and thereby encoded multiple regions of increasing size

and decreasing resolution at each pixel location. Other

works have incorporated long-range context by generat-

ing a number of segmentations at various scales (often

arranged as trees) to propose many possible labelings

(e.g., Ladicky et al (2009); Carreira and Sminchisescu

(2012)). HOEs have been employed to model long-range

smoothness (Kohli et al, 2009), shape-based informa-

tion (Li et al, 2013; Gulshan et al, 2010), cardinality-

based potential (Woodford et al, 2009) and label

co-occurrences (Ladickỳ et al, 2013). While densely-

connected pairwise models such as (Krähenbühl and

Koltun, 2011) are suitable for fine-grained segmenta-

tion, indoor scenes rarely require such full connectivity

because most of the candidate classes exhibit definite

boundaries unlike e.g. trees or cat fur. In contrast to

previously-proposed HOEs, we propose using the ge-

ometrical structure of the scenes to model high-level

interactions.

Currently popular parameter estimation meth-

ods include partition function approximations (Shotton

et al, 2009), cross validation (Shotton et al, 2009) or

simply hand picked parameters (Silberman and Fergus,

2011). We used a one-slack formulation (Joachims et al,

2009) of the parameter learning technique of (Szummer

et al, 2008), which gives a more efficient optimization

of the cost function compared to the n-slack formula-

tion employed in (Tsochantaridis et al, 2004; Szummer

et al, 2008). Further, we extend the parameter estima-

tion problem to consider multiple edge-based energies

and learn parameters using a quadratic program.

Our geometric reconstruction scheme is close to

the one used by Xiong and Huber (2010) to create se-

mantic 3D models of indoor scenes and the smooth-

ness constraint-based segmentation technique of Rab-

bani et al (2006). Whilst both these schemes use data

from accurate laser scanners, we improved their algo-

rithm to make it suitable to tackle the less accurate

depth data acquired by a low-cost Microsoft Kinect sen-

sor that operates in real time. Our proposed algorithm

relaxes the smoothness constraint in missing depth re-

gions and considers more reliable appearance cues to

define planar surfaces.

3 Proposed Conditional Random Field Model

As a prelude to the development of a hierarchical ap-

pearance model and a HOE defined over planes (Fig.

1), we first outline briefly the conditional random field

model and its components. We use a CRF to capture

the conditional distribution of output classes given an

input image. The CRF model takes into consideration

the color, location, texture, boundaries and layout of

pixels to reason about a set of semantically-meaningful
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Fig. 1: The figure summarizes our proposed approach to combine global geometric information with low-level cues. Only
limited graph nodes are shown for the purpose of a clear illustration.

classes. The CRF model is defined on a graph com-

posed of a set of vertices V and a set of edges E . We

want the model to capture not only the interactions

between direct neighbours in the graph, but also long-

range interactions between nodes that form part of the

same planar regions (Fig. 2). To achieve this, we treat

our problem as a graphical probabilistic segmentation

process in which a graph G(I) = 〈V, E〉 is defined over

an image I (Blake et al, 2011).

The set of vertices V represents individual pixels in

a graph defined on I. If the set cardinality (#V) is T

then the vertex set represents all the pixels: V = {pi :

i ∈ [1,T]}. Similarly, E represents a set of edges which

connect adjacent vertices in G(I). These edges are undi-

rected based on the assumption of conditional indepen-

dence between the nodes. The goal of multi-class image

labeling is to segment an image I by labeling each pixel

pi with its correct class label `i ∈ L. The set of all pos-

sible classes is given by L = {1, ..., L} and the total

number of classes is #L = L.

If the estimated labeling of an image I is represented

by a vector y, where y = (yi : i ∈ [1,T]) ∈ LT is

composed of discrete random variables associated with

each vertex in G(I), we have the likelihood of labeling

y decomposed into node and maximal clique potentials

as follows:

P(y|x;w) =
1

Z(w)

∏
i∈V

θwuu (yi,x)
∏
{i,j}∈E

θwpp (yij ,x)
∏
c∈C

θwcc (yc,x)

(1)

where, x denotes the observations made from an image

I, Z(w) is a normalizing constant known as the parti-

tion function, w represents a vector which parametrizes

the model and wu, wp and wc are the components of

w which parametrize the unary, pairwise and higher-

order potential functions. The variables yi, yij and yc
represent the labeling over node i, pairwise clique {i, j}
and the higher-order clique c respectively. The poten-

tial functions associated with yi, yij and yc are denoted

by θu, θp and θc, respectively. The conditional distri-

bution in Eq. 1 for each possible labeling y ∈ LT can

be represented by an exponential formulation in terms

of Gibbs energy: P(y|x;w) = 1
Z(w)exp(−E(y,x;w)).

This energy can be defined in terms of log-likelihoods:

E(y,x;w) = − log(P(y|x;w) Z(w))

=
∑
i∈V

ψu(yi,x;wu) +
∑
{i,j}∈E

ψp(yij ,x;wp) +
∑
c∈C

ψc(yc,x;wc).

(2)

These three terms in Eq. 2, in which the Gibbs energy

has been decomposed (using Eq. 1) are called the unary,

pairwise and higher order energies respectively (Fig. 2).

These energies are related to the potential functions

defined in Eq. 1 by: θwkk (yk,x) = exp(−ψ(yk,x;wk))

with k ∈ {u, p, c}. We will describe the unary, pairwise

and higher order energies in Sec. 3.1, Sec. 3.2 and Sec.

3.3, respectively.

In the inference stage, the most likely labeling is

chosen using Maximum a Posteriori (MAP) estimation

over possible labelings y ∈ LT, and denoted y∗:

y∗ = argmax
y∈LT

P(y|x;w) (3)

Since the partition function Z(w) does not depend on

y, Eq. 3 can be reformulated as an energy minimization

problem, as follows:

y∗ = argmin
y∈LT

E(y,x;w) (4)

The parameter vector w, introduced in Eq. 4, is learnt

using a max-margin criterion (see Sec. 4.1 for details).

3.1 Unary Energies

The unary energy in Eq. 2 is further decomposed into

two components, appearance energy and location en-
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Fig. 2: A factor graph representation for our CRF model. The
bottom layer represents pixels and the top layer represents
planar regions. Each circle represents a latent class variable
while black boxes represent terms in the CRF model (Eq. 2).

ergy (Fig. 1):

∑
i∈V

ψu(yi,x;wu) =
∑
i∈V

appearance︷ ︸︸ ︷
φi(yi,x;wapp

u ) +
∑
i∈V

location︷ ︸︸ ︷
φi(yi, i;w

loc
u )

(5)

We describe both terms in the following sections.

3.1.1 Proposed Appearance Energy

The proposed appearance energy (first term) in Eq. 5 is

defined over the pixels and the planar regions (Fig. 1).

We use the class predictions defined over the planar re-

gions to improve the posterior defined over the pixels.

In other words, planar features are used to reinforce

beliefs for some dominant planar classes (e.g., walls,

blinds, floor and ceiling). To combine the local appear-

ance and the geometric information, we use a hierarchi-

cal ensemble learning method (Fig. 3). Our technique

combines two axiomatic ensemble learning approaches;

linear opinion pooling (LOP) and the Bayesian ap-

proach. Note that we have outputs from a pixel based

classifier which operates on pixels, and a planar regions

based classifier which works on planar regions. With

these outputs, we first fuse them using a simple LOP

which produces a weighted combination of both classi-

fier outputs,

P(yi|x1, . . . ,xm) =
m∑
j=1

κjPj(yi|xj), (6)

where xj denotes the representation of an image in dif-

ferent feature spaces, Pj denotes probability of a class

yi given a feature vector xj , κj : j ∈ [1,m] denotes the

weights and m = 2. Note that instead of using a single

set of weights, we use multiple configurations of weights,

each with a small component of random noise, to ob-

tain several contrasting opinions. After unifying beliefs

based on contrasting opinions, the Bayesian rule is used

to combine them in the subsequent stage. To try a num-

ber of weighting options (r configurations of weights κ)

to generate contrasting opinions o = [P(yi|x)κ
T

]r, we

can represent our ensemble of probabilities as1,

P(yi|o1, . . . ,or) = P(o1,...,or|yi)P(yi)
P(o1,...,or)

.

Since o1, . . . ,or are independent measurements given

yi, we have, P(yi|o1, . . . ,or) = P(o1|yi)...P(or|yi)P(yi)
P(o1,...,or)

.

Again applying the Bayes rule and after simplification

we get,

P(yi|o1, . . . ,or) = ρP(yi|o1)...P(yi|or)
P(yi)r−1 . (7)

Here, P(yi) is the prior and ρ is a constant which de-

pends on the data and is given by ρ = P(o1)...P(or)
P(o1,...,or)

(Ed-

wards et al, 2007). The appearance energy is therefore

defined by:

φi(yi,x;wapp
u ) = wapp

u logP(yi|o1, . . . ,or), (8)

where, wapp
u is the parameter of the appearance energy.

This energy is dependent on the output of two Random-

ized Decision Forest (RDF) classifiers which give the

posterior probabilities P(yi|xi). These classifiers cap-

ture the important characteristics of an image using

a set of features, which encode information about the

shape, the texture, the context and the geometry. The

appearance energy proves to be the most important one

for the scene labeling problem as shown in the results

section (Sec. 6).

Features for Local Appearance Energy:

The local appearance energy is modeled in a discrim-

inative fashion using a trained classifier (RDF in our

case). We extract features densely at each point and

then aggregate them at the super-pixel level using a

simple averaging operation. It must be noted that the

feature aggregation is done on the super-pixels in order

to reduce the computational load and to ensure that

similar pixels are modeled by a unified representation

in the feature space. The super-pixels are obtained us-

ing the Felzenszwalb graph-based segmentation method

(Felzenszwalb and Huttenlocher, 2004). We use a scale

of 10 with a minimum region size of 200 pixels. This

parameter selection is based on prior tests which were

performed on a validation set (Sec. 6.2).

A rich feature set is extracted which includes local

binary patterns (LBP) (Ojala et al, 2002), texton fea-

tures (Shotton et al, 2009), SPIN images (Johnson and

Hebert, 1999), scale invariant feature transform (SIFT)

(Lowe, 2004), color SIFT, depth SIFT and histogram of

1 In this work we set r = 3 and κ is set to [0.25, 0.75],
[0.5, 0.5] and [0.75, 0.25] respectively in each case. This choice
is based on the validation set (see Sec. 6.2).
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Fig. 3: Effect of the Ensemble Learning Scheme: At the pixel location, shown in the figure, the posterior predicted by the
local appearance model favors the class Sink. On the other hand, the planar regions based appearance model takes care of
the geometrical properties of the region and favors the class Floor. The right most bar plot shows how our proposed ensemble
learning scheme picks the correct class decision. (Best viewed in color)

gradients (HOG) (Dalal and Triggs, 2005). These low-

level features help in differentiating between the dis-

tinct classes commonly found in indoor scenes. LBP is a

strong texture classification feature which captures the

relation between a pixel and its neighbors in the form of

an encoded binary word. LBP is extracted from a 10x10

region around a pixel and the normalized histogram is

converted to a 59 dimensional vector. For the calcu-

lation of texton features, we first convolve the image

with a filter bank of even and odd symmetric oriented

energy kernels at four different scales (0.5, 0.6, 0.72,

0.86) with four different orientations ( 0, 0.79, 1.57 and

2.35 radians). The Gaussian second derivative and the

Hilbert transform of the Gaussian second derivative are

used as the even and odd symmetric filters respectively.

This creates a filter-bank consisting of a total of 32 fil-

ters of varying sizes (11x11, 13x13, 15x15 and 17x17).

Next, image pixels are grouped into k = 32 textons
by clustering the filter-bank responses into 32 groups.

This gives a 96 dimensional vector which is composed

of filter responses.

SPIN images are extracted by considering a radius

of r = 8 around a pixel with 8 bins. This gives us a

64 dimensional vector. SIFT descriptors of length 128

are extracted on a 40x40 patch both for the case of

simple SIFT and depth SIFT. We followed the same

procedure as detailed in (Silberman and Fergus, 2011)

to calculate the depth SIFT. To incorporate the color

information into the local SIFT, we use the opponent

angle, hue and spherical angle method of Van De Wei-

jer and Schmid (2006). The parameters are set in a way

similar to (Van De Weijer and Schmid, 2006) and this

gives a 111 dimensional vector. We extract a 36 di-

mension HOG feature vector on a 4x4 region quantized

into 9 orientation bins. Trilinear interpolation is used

to place each gradient in the appropriate spatial and

orientation bin.

These features form a high dimensional space (~640

dimensions) and it becomes computationally intensive

to train the classifier with all these features. Moreover,

some of these features are redundant while some others

have a lower accuracy. We therefore employ the genetic

search algorithm from the Weka attribute selector tool

(Hall et al, 2009) to find the most useful set of 256

features on the validation set (Sec. 6.2). This feature

subset selection effectively reduces the classifier training

time to one third of what it was originally. Also, the

performance of the lower-dimensional feature vector is

comparable to that of the original feature set, e.g., on

the validation set from NYU v1, we noted only 0.03%

decrease in accuracy.

Features for Appearance Model on Planes:

One of the most important features is the plane ori-

entation which is characterized by the direction of its
normal. We include the area and height (maximum z-

axis value) of the planar region in the feature set to

characterise its extent and position. Since these mea-

sures may vary significantly and a relative measure is

needed, we normalize each value with respect to the

largest instance in the scene. Color histograms in the

HSV and CIE LAB color spaces are also included. The

responses to various filters are calculated and aggre-

gated at the planar level (in the same manner as tex-

tons). The RDF classifier is trained using these features

and used to predict the posterior on planar regions.

Unary Classifiers:

Separate RDF classifiers are trained, one for the ex-

tracted local features on super-pixels and the other

for the planar regions. The RDF classifier creates an

ensemble of trees during the training phase and com-

bines their outputs for predictions (Breiman, 2001). For

our purpose, we directly obtain the class probabilities

P(yi|x) by averaging the decisions over all tress. We use

~
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the RDF classifiers to predict the unary cost (Eq. 8) in

the CRF model (Fig. 2) because of their efficiency and

inherent multi-class classification ability. We trained

both RDFs with 100 trees and 500 randomly-sampled

variables as candidates at each split. This configuration

was set empirically taking into account the trade-off be-

tween reasonable performance and efficient training of

the RDFs.

3.1.2 Proposed Location Energy

The unary location prior (second term) in Eq. 5 models

the class label distribution based on the location of the

pixels in an image. This energy is useful during the

segmentation process since it encodes the probability

of the spatial presence of a class. The location energy

is defined for each class and every pixel location in the

image plane:

φ(yi, i;w
loc
u ) = wloc

u logFloc(yi, i), (9)

where, wloc
u parameterises the location energy and the

function Floc(yi, i) is dependent on both the location

and the geometry of a pixel (Fig. 1).

Our formulation of Floc(yi, i) is based on the idea

that the location of a class (which has a characteristic

geometric orientation) can further be made specific if

any geometric information about the scene is available.

For example, it is highly unlikely to have a bed or floor

at some locations in an image, where we know a ver-

tical plane exists. Therefore, we seek to minimize the

location prior on the regions where the geometric prop-

erties of an object class do not match with observations

made from the scene. First, we average the class occur-

rences over the ground truth of the training set for each

class (yi) (Silberman and Fergus, 2011; Shotton et al,

2009). This can be represented by the ratio of the class

occurrences at the ith location to the total number of

occurrences:

Floc(yi, i) =
N{yi,i} + α

Ni + α
, (10)

where α is a constant which corresponds to the weak

Dirichlet prior on the location energy (Shotton et al,

2009). Next, we incorporate the geometric information

into the location prior. For this, we extract the pla-

nar regions, which occur in an indoor scene, and divide

them into two distinct geometrical classes: horizontal

and vertical regions. Since the Kinect sensor gives the

pitch and roll for each image, the intensity and depth

images in the NYU-Depth dataset are rotated appro-

priately to remove any affine transformations. This po-

sitions the horizon (estimated using the accelerometer)

horizontally at the center of each image. We use this

Fig. 4: Learning Location Prior using Geometrical Context:
(a) Original image. (b) The normal location prior for wall is
shown. (c) It shows how the prior (b) is combined with the
planar information to channelize the general location infor-
mation of a class by considering the scene geometry. Note
that white color in (b) and (c) shows high probability.

horizon to split the horizontal geometric class into two

subclasses, the ‘above-horizon’ and ‘below-horizon’ re-

gions. For each planar object class, we retain the 2D

location prior in the regions where the geometric prop-

erties of the class match with those of the planar re-

gion, and decrease its value by a constant factor in the

regions where that class cannot be located. For exam-

ple, the roof cannot lie on a horizontal plane in the

below-horizon region or a vertical region. This effec-

tively reduces the class location prior to only those re-

gions which are consistent with the geometrical context.

It must be noted that this elimination procedure is only

carried out for planar classes e,g., roof, floor, bed and

blinds. After that, the location prior is smoothed us-

ing a Gaussian filter and the actual prior distribution

is normalized in such a way that a uniform distribution

across different classes is obtained. The prior distribu-

tion is normalized to give
∑
i Floc(yi, i) = 1/L, where L

is the total number of classes. Examples of the resulting

location priors are shown in Fig. 4.

3.2 Pairwise Energies

The pairwise energy in Eq. 2 is defined on the edges

E (Fig. 2). This energy is defined in terms of an edge-

sensitive Potts model (Boykov et al, 2001),

ψp(yij ,x;wp) = wT
p φp1

(yi, yj)φp2
(x). (11)

The first function (φp1
) is a class transition energy and

the second one (φp2
) is the spatial discontinuation en-

ergy. These functions are defined in the following sub-

sections (Sec. 3.2.1 and 3.2.2 respectively).

3.2.1 Class Transition Energy

The class transition energy in Eq. 11 is a simple zero-

one indicator function which enforces a consistent la-

beling. The function is defined as:

φp1(yi, yj) = a1yi 6=yj =

{
0 if yi = yj
a otherwise
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For this work we used a = 10. This parameter selection

was based on the validation set (Sec. 6.2).

3.2.2 Proposed Spatial Discontinuation Energy

The spatial discontinuation energy in Eq. 11 encourages

label transitions at natural boundaries in the image

(Shotton et al, 2009; Rother et al, 2004). It is defined as

a combination of edges from the intensity image, depth

image and the super-pixel edges extracted using Mean-

shift (Fukunaga and Hostetler, 1975) and Felzenswalb

(Felzenszwalb and Huttenlocher, 2004) segmentation:

φp2
(x) = wT

p2φedges(x). Weights assigned to each edge-

based energy are learned using a quadratic program (see

Sec. 4.1). In simple terms, edges which match with the

manual annotations to a large extent contribute more

in the energy φp2
. The edge-based energy is given by:

φedges(x) = [βx exp(− σij
〈σij〉

), βd exp(−
σdij
〈σdij〉

),

βsp-fwFsp-fw(x), βsp-msFsp-ms(x), α]T,

(12)

where, σij = ‖xi − xj‖2, σdij = ‖xdi − xdj‖2 and 〈.〉 de-

notes the average contrast in an image. xi and xdi shows

the color and depth image pixels respectively. Fsp-ms

and Fsp-fw are indicator functions which give all zeros

except at the boundaries of the Mean-shift (Fukunaga

and Hostetler, 1975) or Felzenswalb (Felzenszwalb and

Huttenlocher, 2004) super-pixels respectively. The out-

put is a binary image containing ones at the super-

pixel boundaries. The inclusion of a constant α = 1 al-

lows a bias to be learned to remove small isolated parts

during the segmentation process. For our case, we set

βx = βd = 150 and βsp-ms = βsp-fw = 5 based on the

validation set (see Sec. 6.2).

3.3 Proposed Higher-Order Energies

A useful strategy to enhance the representational power

of a CRF model is to introduce high-order energies (Eq.

1). These energies are dependent on a relatively large

number of dimensions of the output labeling vector y

and therefore incorporate long-range interactions (Fig.

2). HOEs try to eliminate inconsistent variables in a

clique. On the other hand, these energies try to encour-

age all the variables in a clique to take the dominant

label. The robust Pn model (Kohli et al, 2009) poses

this encouragement in a soft manner while the Pn Potts

model (Kohli et al, 2007) presents this requirement in

a hard fashion. In the robust Pn model some pixels

in a clique may retain different labelings. Hence, it is

a linear truncated function of the number of inconsis-

tent variables in a clique. We define our proposed HOE

Fig. 5: Robust Higher-
Order Energy: When
the number of inconsis-
tent nodes in a clique
increases, the penalty
term defined over the
clique increases in a log-
arithmic fashion. 0 

which works in a similar manner as the robust HOE

(Kohli et al, 2009):

ψc(yc,x;wc) = wc min
`∈L
Fc(τc), (13)

where, Fc(.) is a function which takes the number of

inconsistent pixels τc = #c − n`(yc) as its argument.

Here, n` is a function which computes the number

of pixels in clique c taking the label `. The non-

decreasing concave function Fc is defined as: Fc(τc) =

λmax − (λmax − λ`)exp(−ητc), where η = η0/Q` and

η0 = 5 (Fig. 5). Here η0 is the slope parameter which

decides the rate of increase of the penalty, with the

increase in the number of pixels disagreeing with the

dominant label. The parameters λmax and λ` define

the penalty range which is typically set to 1.5 and 0.15

respectively. Q` is the truncation parameter which pro-

vides the bound for the maximum number of disagree-

ments in a clique. The higher-order cliques are formed

using the depth-based segmentation method (Sec. 5).

Details about the disintegration of the HOE (Eq. 13)

are given in Appendix A to describe how the graph cuts

algorithm can be applied.

4 Structured Learning and Inference

The task of indoor scene labeling involves making

joint predictions over many complex yet correlated and

structured outputs. The CRF model defined in the pre-

vious section (Sec. 3) explicitly models the correlations

over the output space and performs approximate infer-

ence at test time. However, the CRF model contains a

number of energies, parametrized by weights which we

learn using a S-SVM formulation. The learning proce-

dure is outlined as follows.

4.1 Learning Parameters

Unary, pairwise and high order terms (Eq. 2 and Fig.

1, 2) in the CRF model introduce many parameters

which need a more principled tuning procedure rather

than simple hand-picked values, cross validation learn-

ing or a piecewise training mechanism. In this work,
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we use a structured large-margin learning method (S-

SVM) to efficiently adjust the probabilistic model pa-

rameters. Instead of using an n-slack formulation of the

cost function, we use a single slack formulation, which

results in more efficient learning (Joachims et al, 2009).

Given N training images, the training set can be repre-

sented in the form of ordered pairs of image data x and

labelings y: T = {(xn,yn), n ∈ [1, . . . , N ]}. If ξ ∈ R+

is a single slack variable, the following margin re-scaled

cost function is solved to compute the parameter vector

w∗:

(w∗, ξ∗) = argmin
w,ξ

1

2
‖w‖2 + Cξ (14)

subject to;

1

N

N∑
n=1

[E(y,xn;w)−E(yn,xn;w)] ≥ 1

N

N∑
n=1

∆(y,yn)−ξ

(15)

∀n ∈ [1..N ],∀y ∈ L : y 6= yn, C > 0,

wi ≥ 0 : ∀wi ∈ {w}\wu ,

where, C is the regularization constant, ∆(y,yn) is

the Hamming loss function and the parameter vector w

consists of the appearance energy weight (wapp
u ), the lo-

cation energy weight (wloc
u ), the pairwise energy weight

(wp) and the weight for HOE (wc). Due to the large

number of constraints in Eq. 15, a cutting plane algo-

rithm (Joachims et al (2009), Algorithm 4) is used for

training which only considers the most violated con-

straints to solve our optimization problem. It can be

proved that the algorithm converges after O(1/ε) steps

with the guarantee that the objective value (once the

final solution is reached) differs by at most ε from the

global minimum (Tsochantaridis et al, 2004). The two

major steps in this algorithm are the quadratic opti-

mization step, which is solvable by off-the-shelf convex

optimization problem solvers and the loss-augmented

prediction step, which can be solved by graph cuts.

Once suitable parameters for the CRF are learned,

the parameters for the edge-based energies are learned

which results in a balanced representation of each edge

in the pairwise energy. In our approach, instead of

a simple contrast-based energy, we define a weighted

combination of various possible edge-based energies

(such as based on depth edges, contrast-based edges,

super-pixels edges) to accommodate information from

all these sources (see Sec. 3.2.2 and Eq. 12). We start

with a heuristic-based initialization and iterate over the

training samples to learn a more balanced represen-

tation between the different edge-based energies. The

weights for edges are restrained to be non-negative so

that the energy remains sub-modular. This condition is

necessary because the graph cuts based exact inference

methods can be applied only to sub-modular energy

minimization problems.

We use structured learning to learn weights for the

spatial discontinuation energy (Sec. 3.2.2). The corre-

sponding quadratic program is given as follows:

argmax
‖wp2

‖=1

γ (16)

s.t.; {Econ, Edep, Efel-sp, Ems-sp}−Egrd ≥ γ, {wp2
} ≥ 0,

where, Egrd is the energy when the spatial discontinu-

ation energy is based on the manually identified edges

from the training images. Energies for the case when the

spatial discontinuation energy is based on image con-

trast, image depth, Felzenswalb or mean-shift super-

pixels are represented as Econ, Edep, Efel-sp or Ems-sp

respectively. The cost function given in Eq. 16 is opti-

mized in a similar way to that described in (Joachims

et al (2009), Algorithm 4). After learning, it turns out

that the contrast and depth-based edge energies are

more reliable and therefore play a dominant role in the

spatial discontinuation energy.

4.2 Inference in CRF

Once the CRF energies have been learned along with

their parameters, the next step is to find the most prob-

able labeling. As discussed earlier in Sec. 3, this turns

out to be an energy minimization problem (Eq. 4).

Since our energy function is sub-modular, this energy

minimization problem can be solved via the expansion

move algorithms (alpha-expansion or alpha-beta swap

graph cuts algorithm) of Boykov and Funka-Lea (2006).

The main idea is to decompose the energy minimization

problem into a series of binary minimization problems

which can themselves be solved efficiently. The algo-

rithm starts with an arbitrary initial labeling and at

each step the move is only made if it results in an overall

minimization of the cost function (Boykov et al, 2001;

Boykov and Funka-Lea, 2006).

5 Planar Surface Detection

Indoor environments are predominantly composed of

structures which can be decomposed into planar re-

gions, such as walls, ceilings, cupboards and blinds.

These flat surfaces are easier to manufacture and thus

appear frequently in man-made environments (Sec.

6.2.2). We extract the dominant planes which best fit

the sparse point clouds of indoor images (obtained from
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RGBD data) and use them in our model-based repre-

sentation (Fig. 1). It must be noted that the depth im-

ages produced by a Kinect contain many missing values

e.g., along the outer boundaries of an image or when the

scene contains a black or a specular surface. Traditional

plane detection algorithms (e.g. Silberman et al (2012);

Rabbani et al (2006)) either make use of dense 3D point

clouds or simply ignore the missing depth regions. In

contrast, we propose an efficient plane detection algo-

rithm which is robust to missing depth values (often

termed as holes) in the Kinect depth map. We expect

that the inference made on the improved planar regions

will help us achieve a better semantic labeling perfor-

mance (see Sec. 6.2.1).

Our method2 first aligns the 3D points with the

principal directions of the room. Next, surface normals

are computed at each point. Contiguous points in space

are then clustered by a region growing algorithm (Algo-

rithm 1) which groups the 3D points in a way to main-

tain their continuity and smoothness. It is robust to

erroneous normal orientations caused due to big holes

mostly present along the borders of the depth image

acquired via Kinect sensor (Fig. 7). The basic idea is

to make use of appearance-based cues when the depth

information is not reliable. The algorithm begins with

a seed point and at each step, a region is grown by in-

cluding the points in the current region with normals

pointing in the same direction. Iteratively, the region

is extended and the newly included points are treated

as seeds in the subsequent iteration. To deal with erro-

neous sensor measurements along the border and any

other regions with missing depth measurements, we re-

lax the smoothness constraint and use major line seg-

ments present in the image to decide about the region

continuity.

The line segment detector (LSD) (Von Gioi et al,

2010) is used to extract the major line segments. These

line segments are grouped according to their vanish-

ing points. Line segments in the direction of the major

vanishing points contribute more in separating regions

during the smoothness constraint-based plane detec-

tion process. However, we found empirically that the

use of any simple edge detection method (e.g., Canny

edge detector) in our algorithm gives nearly identi-

cal performance with much better efficiency. We fur-

ther increased the efficiency by replacing iterative re-

gion growing with k-means clustering for regions hav-

ing valid depth values. The planar patches are grown

from regions with valid depth values towards regions

having missing depths. In this process, segmentation

boundaries are predominantly defined by the appear-

2 Plane detection code is available at author’s webpage:
http://www.csse.uwa.edu.au/~salman

(a) (b) (c)

(f)(e)(d)

Fig. 6: An illustrative example showing the results of the
planar surface detection algorithm. An original image (a) and
its depth map (b) are used as inputs to the algorithm which
uses appearance (c) and depth-based cues (d) to provide an
initial (e) and a final segmentation map (f).

Algorithm 1 Region Growing Algorithm for Depth-

Based Segmentation

Input: Point cloud = {P}, Depth map = {D}, RGB image =
{I}, Edge matching threshold eth, Normalized boundary
matching threshold bth

Output: Labeled planar regions = {R}
1: Calculate point normals: {N} ← Fnormal(D)
2: Remove inconsistencies by low-pass filtering: {Nsm} ←

N ∗ ksm // ksm is the smoothing kernel
3: Cluster 3D points with similar normal orientations:
{Nclu} ← Fk−means(Nsm)

4: Initialize: R← Nclu

5: Line segment detector: {L} ← FLSD(I)
6: Diffused line map: {Lsm} ← L ∗ k′sm
7: Identify planar regions with missing depth values: {M} ←
Fholes(Nclu,D)

8: Find adjacency links for each cluster in Nclu: Aclu

9: Identify all unique neighbors of clusters in M: Unb

10: From Unb, separate correct and faulty clusters into Ncor

and Ninc respectively
11: Initialize available cluster list: Lavl ← Ncor

12: Initialize label propagation list: Lprp ← ∅
13: while list Lavl is not empty do
14: Randomly draw a cluster from available Ncor: ridx
15: Identify ridx neighbors (Nr−idx) with faulty depth

values using Aclu and M
16: for each neighbor nr−idx in Nr−idx do
17: Find mutual boundary (bm) of ridx and nr−idx
18: Calculate edge strength at bm using Lsm: estr
19: Calculate normalized boundary matching cost:

bstr = bm/ Area of nr−idx
20: if estr < eth ∧ bstr > bth then

21: nr−idx
add−−−→ Ncor, nr−idx

add−−−→ Lavl

22: ridx
rem−−−→ Lavl, nr−idx

rem−−−→ Ninc

23: Update Lprp with ridx and nr−idx. If nr−idx
was previously replaced, use the updated value.

24: ridx
rem−−−→ Lavl

25: for any leftover clusters in Ninc do
26: Randomly draw a cluster from available Ninc: r′idx
27: Execute similar steps (from line 15 to 24) for r′idx

28: Update R according to Lprp

29: return {R}

http://www.csse.uwa.edu.au/~salman
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Fig. 7: Comparison of our algorithm (last row) with Silberman et al (2012)
(middle row) is shown. Note that the white color in middle row shows non-
planar regions. The last row shows detected planes averaged over super-
pixels. Results show that our algorithm is more accurate especially near
the outer boundaries of the scene. (Best viewed in color)

Performance Evaluation
Method EPC Acc. E+NPC Acc.

Silberman et al (2012) 0.69± 0.09 0.67± 0.10
Rabbani et al (2006) 0.60± 0.12 0.57± 0.14

This paper 0.76± 0.09 0.81± 0.07

Timing Comparison (averaged for NYU v2)
(for Matlab prog. running on single core, thread)
Silberman et al (2012) Rabbani et al (2006) This paper

41 sec 73 sec 3.1 sec

Table 1: Comparison of plane detection results
on the NYU-Depth v2 dataset. We report detec-
tion accuracies for ‘exactly planar classes’ (EPC)
and ‘exact and nearly planar classes’ (E+NPC).
Efficiency of the proposed method is also com-
pared with related approaches.

ance based edges in an image. Since the majority of

the pixels have correct orientation, fitting a plane de-

creases the orientation errors and the approximate ori-

entation of major surfaces is retained. An added benefit

of our algorithm is that curved surfaces are approx-

imated by planes rather than missed out during the

region-growing process.

Once the regions have been grown to their full ex-

tent, small regions are dropped, and only regions with

a significant number of pixels are retained. After that,

planes are fitted onto the set of points belonging to each

region using TLS (Total Least Square) fitting. Least-

square plane fitting is a non-linear problem, but it re-

duces to an eigenvalue problem in the case of planar

patches. This makes the plane fitting process highly ef-

ficient. It is important to note that although indoor sur-

faces are not strictly limited to planes, we assume that

we are dealing with planar regions during the plane fit-

ting process. It turns out that this assumption is not

a hard constraint since the majority of the surfaces in

an indoor environment are either strictly planar (e.g.,

walls, ceilings) or nearly planar (e.g., beds, doors).

We show a qualitative comparison of our approach

with other plane detection techniques in Fig. 7. Note

that our approach provides a depth-based segmenta-

tion and then fits planes to the approximate geometry

of the region (3rd row, Fig. 7). This makes it possible

to identify better planar region candidates compared

to Silberman et al (2012) (2nd row, Fig. 7). We show a

quantitative performance and efficiency comparison in

Table 1. For the performance evaluation, we report the

achieved accuracy when a valid planar region was iden-

tified for a strictly planar semantic class (EPC, Table

1). To quantify the validity of a detected planar region,

we check its alignment with the three dominant and

perpendicular room directions. We also report the ac-

curacy with which a valid planar region was identified

for the exactly (e.g., walls, ceilings) and nearly planar

(e.g., blinds, beds) semantic classes (E+NPC, Table 1).

The results demonstrate that our algorithm is superior

to other region growing algorithms (e.g., Rabbani et al

(2006)) which are suitable for the segmentation of dense

point clouds and fail to deal with erroneous depth mea-

surements from the Kinect sensor (Table 1).

6 Experiments and Analysis

6.1 Datasets

We evaluated our framework on the NYU-Depth

datasets (v1 and v2) and the SUN3D dataset. All these

are recent RGBD datasets for indoor scenes acquired

using the Microsoft Kinect structured light sensor. The

NYU-Depth dataset is the only one of its kind and

comes with manual annotations acquired via Amazon

Mechanical Turk. The dataset comes in two releases.

The first version (v1) of NYU-Depth (Silberman and

Fergus, 2011) consists of 64 different indoor scenes cat-

egorized into 7 major scene types and contains 2284

labeled frames. The second version (v2) of NYU-Depth

(Silberman et al, 2012) consists of 464 different indoor

scenes classified into 26 major scene types and con-

tains 1449 labeled frames. SUN3D is a large-scale in-

door RGBD video dataset (Xiao et al, 2013); however,

it is still under development and only a small portion

has been labeled. We extracted labeled key-frames from

the SUN3D database which amounted to 83 images. We

evaluated our method on the labeled portions of the

NYU v1, v2 and SUN3D datasets.

6.2 Results

In the NYU-Depth v1 dataset, around 1400 different

object classes are present in all indoor scenes. Since not

all object classes have a sufficient representation, we fol-

low the procedure in (Silberman and Fergus, 2011) to

cluster the existing annotations into the 13 most fre-

quently occurring classes. This clustering is performed
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Fig. 8: Examples of the semantic labeling results on the NYU-Depth v1 dataset. The top row shows the intensity images,

the bottom row are the ground truths and the middle row are our labeling results. The representative colors are shown in the

figure legend at the bottom. Our framework performs well including the case of some unlabeled regions. (Best viewed in color)

Table 2: Results on the NYU-Depth v1, v2 and the SUN3D Datasets: We report the results of our proposed framework when
only the unary energy was used (top 3 rows) and report the improvements observed when more sophisticated priors and HOEs
(last row) were added. Accuracies are reported for 13, 22 and 13 class semantic labelings for NYU v1, v2 and SUN3D datasets,
respectively. The best performance is achieved by combining unary, pairwise and HOEs in the CRF framework.

Variants of Our Method
NYU-Depth v1 NYU-Depth v2 SUN3D

Global Accuracy Class Acc. Global Accuracy Class Acc. Global Accuracy Class Acc.

Feature Ensemble (FE) 52.8± 13.3% 53.4% 44.4± 15.8% 39.2% 41.9± 11.1% 40.0%

FE + PAM (single opinion) 60.9± 13.3% 60.2% 51.1± 15.6% 41.5% 47.6± 11.3% 41.8%

FE + Planar Appearance Model (PAM) 63.3± 13.1% 62.7% 52.5± 15.5% 42.4% 48.3± 11.5% 42.6%

FE + PAM + Location Prior (2D) 65.2± 13.4% 63.5% 53.6± 15.6% 42.8% 48.9± 11.7% 42.8%

FE + PAM + Planar Location Prior (PLP) 68.6± 13.8% 65.0% 55.3± 15.8% 43.1% 51.5± 11.9% 43.3%

FE + PAM + PLP + CRF 70.5± 13.8% 66.5% 58.0± 16.0% 44.9% 53.7± 12.1% 44.4%

FE + PAM + PLP + CRF (HOE) 70.6± 13.8% 66.5% 58.3± 15.9% 45.1% 54.2± 12.2% 44.7%

Table 3: Class-wise Accuracies on NYU-Depth v1: Mean class and global accuracies are also reported. Our proposed framework
performs very well on the planar classes (e.g., ‘wall ’, ‘television’, ‘ceiling’).
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Class Freq. 1.3 3.7 13.4 7.7 3.7 11.3 4.7 2.5 4.6 0.6 26 2.1 0.24 18.1 - -

This paper 66.8 67.7 47.5 72.6 79.2 67.8 53.4 75.1 69.3 78.6 86.2 62.0 38.1 - 66.5 70.6

using the Wordnet Natural Language Toolkit (NLTK).

In the NYU-Depth v2 dataset, around 900 different ob-

ject classes are present overall. We used a similar proce-

dure to cluster existing annotations into the 22 most fre-

quently occurring classes. Moreover, we report results

on 40 classes to show how our performance compares

when the number of semantic classes is increased. For

the SUN3D dataset, 32 classes are present in the labeled

images we acquired. We clustered them into 13 major

classes using Wordnet. In all three datasets, a supple-

mentary class labeled ‘other ’ is also included to model

rarely-occurring objects. In our evaluations, we exclude

all unlabeled regions. For all the three datasets, roughly

a train/test split of 60%/40% was used. A relatively

small validation set consisting of 50 random images was

extracted from each dataset (except for SUN3D where
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Table 4: Class-wise Accuracies on NYU-Depth v2 (22 classes): Mean class and global accuracies are also reported. Our
proposed framework performs very well on the planar classes (e.g., ‘wall ’, ‘door ’, ‘floor ’).
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Class Freq. 4.7 2.0 4.2 10.7 1.4 10.8 2.2 6.2 2.6 0.5 22.8 2.3 2.7 1.7 0.9 2.3 1.7 0.3 1.7 0.8 0.2 0.1 17.4 - -

This paper 32.3 56.9 38.3 45.6 64.7 75.8 43.6 58.6 47.9 45.7 77.5 54.0 43.8 38.8 34.0 58.3 37.2 23.1 28.4 35.7 22.6 29.9 - 45.1 58.3

Table 5: Class-wise Accuracies on the NYU-Depth v2 (40 classes): Mean class and global accuracies are also reported. Our
proposed framework performs very well on the planar classes (e.g., ‘wall ’, ‘ceiling’, ‘whiteboard ’).
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This paper 65.7 62.5 40.1 32.1 44.5 50.8 43.5 51.6 49.2 36.3 41.4 39.2 55.8 48.0 45.2 53.1 55.3 50.5 46.1 54.1 35.4 50.6

Class B
o
o
k
s

R
ef

ri
g
er

a
to

r

T
el

ev
is

io
n

P
a
p

er

T
o
w

el

S
h

o
w

er
cu

rt
a
in

B
o
x

W
h

it
eb

o
a
rd

P
er

so
n

N
ig

h
ts

ta
n

d

T
o
il

et

S
in

k

L
a
m

p

B
a
th

tu
b

B
a
g

O
th

er
st

ru
ct

u
re

O
th

er
fu

rn
it

u
re

O
th

er
p

ro
p

s

U
n

la
b

el
ed

M
ea

n
C

la
ss

A
cc

u
ra

cy

M
ea

n
P

ix
el

A
cc

u
ra

cy

Class Freq. 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 3.8 2.5 2.2 17.4 - -

This paper 39.1 53.6 50.1 35.4 39.9 41.8 36.3 60.6 35.6 32.5 31.8 22.5 26.3 38.5 37.3 45.7 24.9 29.1 - 43.9 50.7

we used the parameters of NYU-Depth v1). This vali-

dation set was used with the genetic search algorithm

(Sec. 3.1.1) for the selection of useful features and for

the choice of the initial estimates of the parameters

which give the best performance. Afterwards, these pa-

rameters were optimized during the learning process as

described in Sec. 4.1.

We use two popular evaluation metrics to assess our

results, ‘global accuracy ’ and ‘class accuracy ’ (see Ta-

ble 2). Global accuracy measures the average number

of super-pixels which are correctly classified in the test

set. Class accuracy measures the average of the correct

class predictions which is essentially equal to the mean

of the values occurring along the diagonal of the con-

fusion matrix. We extensively evaluated our approach

on both versions of the NYU-Depth dataset and on the

SUN3D dataset. Our experimental results are reported

in Tables 2, 3, 4 and 5. Comparisons with state-of-the-

art techniques are reported in Tables 6, 7, 8 , 9 and 10.

Sample labelings for NYU-Depth v1 and v2 and SUN3D

are presented in Figs. 8, 9 and 11 respectively. Although

the unlabeled portions in the annotated images are not

considered during our evaluations, we observed that the

labeling scheme mostly predicts accurate class labels

(see Figs. 8 and 9).

6.2.1 Ablation Study

We report our results in terms of average pixel and

class accuracies in Table 2. The first row shows the

performance when a simple unary energy defined on

pixels using an ensemble of features is used. We achieve

pixel and class accuracies of 52.8% and 53.4% respec-

tively on NYU-Depth v1. The corresponding accura-

cies for NYU-Depth v2 and SUN3D are 44.4%, 39.2%

and 41.9%, 40.0% respectively. Starting from this base-

line, we were able to obtain significant improvements.

Upon the introduction of the planar appearance model,

the pixel and class accuracies increased by 10.5% and

9.3% from their previous values for NYU-Depth v1 (row

3, Table 2). Similarly for NYU-Depth v2, an increase

of 8.1% and 3.2% is noted for pixel and class accu-

racies respectively. Finally for the SUN3D database,

we achieve an increase of 6.4% and 2.6% in pixel and

class accuracies respectively. Note that a simple av-

eraging operation on the pixel and planar appearance

energies (equivalently an LOP with weights [ 12 ,
1
2 ]) gives

less accurate results (row 2, Table 2). The addition of

the CRF and the proposed location energy enforce a

better label consistency which results in an improve-

ment of 7.2% and 3.8% for NYU-Depth v1, 5.5% and

2.5% for NYU-Depth v2, 5.4% and 2.1% for SUN3D

datasets. The introduction of HOEs gives a slight boost

in accuracy. This is logical since the introduction of

cardinality-based HOEs improves segmentation accu-
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Fig. 9: Examples of semantic labeling results on the NYU-Depth v2 dataset. The top row shows the intensity images, the
bottom row are the ground truths and the middle row are our labeling results. The representative colors are shown in the
figure legend at the bottom. Our framework performs well including the case of some unlabeled regions. (Best viewed in color)
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Fig. 10: The error rate decreases as more area surround-

ing the class boundaries is considered. The introduction

of HOE improves the segmentation accuracy around the

boundaries.

racies for porous and fine structures such as trees and

cat fur, respectively. The classes which are considered

in this work usually have solid structures with definite

and well-defined boundaries. However, when we con-

sider the segmentation performance around the bound-

ary regions, the HOEs give a significant increase in ac-

curacy (Fig. 10).

6.2.2 Comparisons

For NYU-Depth v1, we compare our framework with

(Silberman and Fergus, 2011) (Table 6). With the same

set of classes used in (Silberman and Fergus, 2011), we

achieved a 13.2% improvement in terms of average class

accuracy. We also report the average global accuracy

which gives a better absolute measurement of perfor-

mance. The class-wise accuracies for NYU-Depth v1 are

shown in Table 3 and the complete confusion matrix is

presented in Fig. 12. It can be seen that we perform

really well on planar classes such as wall, ceiling, blinds

and table.

For the case of NYU-Depth v2, we compare our

framework with recent multi-scale convolutional net-

work based techniques (Farabet et al, 2013; Couprie

et al, 2013). Whereas in (Farabet et al, 2013; Cou-

prie et al, 2013) evaluations were performed on just

13 classes, we use a broader range of 22 classes to re-

port our results (see Table 4). To compare with the

class sofa, we report the mean accuracies of the sofa

and chair classes for a fair comparison (if we sum up

the class occurrences of the chair and sofa which are

reported in Couprie et al (2013), the combined class fre-

quency supports such a comparison). We compare the

furniture class in (Couprie et al, 2013) with our cabi-

net class based on the details given in (Couprie et al,

2013). Overall, we get superior performance compared

to (Farabet et al, 2013; Couprie et al, 2013) and also

achieve best class accuracies for 19/22 classes.

On the NYU-Depth v2 dataset, Silberman et al

(2012) defined just four semantic classes: furniture,

ground, structure and props. The choice of these classes

was based on the need to infer the support relation-

ships between objects. We evaluate our method on the
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Table 6: Comparison of the results on the NYU-Depth v1
Dataset: With the same set of classes used in (Silberman and
Fergus, 2011), we achieve a ∼ 13% improvement in terms of
average class accuracy.

Method
NYU-Depth v1

Classes
Global Accuracy Class Accuracy

Silberman and Fergus (2011) 59.8± 11.5% 53.7± 2.9% 13

This paper 70.6± 13.8% 66.5% 13

Table 7: Comparison of results on the NYU-Depth v2
Dataset: With nearly two times the number of classes used in
(Farabet et al, 2013; Couprie et al, 2013), we get 6% and 9%
improvement in terms of average class and global accuracies
respectively.

Method
NYU-Depth v2

Classes
Global Accuracy Class Accuracy

Farabet et al (2013) 51.0± 15.2% 35.8% 13

Couprie et al (2013) 52.4± 15.2% 36.2% 13

This paper 58.3± 15.9% 45.1% 22

Table 8: Comparison of results on the NYU-Depth v2
Dataset (4-class labeling task): Our method achieved best
performance in terms of average pixel and class accuracies
for the 4-class segmentation task. We also get the best clas-
sification performance on structure class.

Method
Semantic Classes Pixel Class

Floor Struct. Furn. Prop. Acc. Acc.

Silberman et al (2012) 68 59 70 42 58.6 59.6

Farabet et al (2013) 68.1 87.8 51.1 29.9 63 59.2

Couprie et al (2013) 87.3 86.1 45.3 35.5 64.5 63.5

Cadena and Košecká (2014) 87.9 79.7 63.8 27.1 67.0 64.3

This paper 87.1 88.2 54.7 32.6 69.2 65.6

4-class segmentation task as well. As shown in Table 8,

we achieved the best performance overall. In particu-

lar, we performed well on planar classes such as floor

and structures. In terms of pixel and class accuracies,

we noted an improvement of 2.2% and 1.3% respec-

tively. We also compare our results with Gupta et al

(2013) in terms of the weighted average Jaccard index

(WAJI). Our system’s performance is lower than that of

Gupta et al (2013), which is based on a very strong but

computationally-expensive contour detection technique

called gPb (Arbelaez et al, 2011) (Table 9). Finally,

we compare our results on a 40-class semantic labelling

task (Table 10). We note that the RGBD version of

the R-CNN model proposed in Gupta et al (2014) per-

forms best. Their approach however, uses external data

(Imagenet) for pre-training and uses synthetic 3D CAD

models from the Internet to generate training data.

One may wonder why the incorporation of geometri-

cal context in the CRF model works and gives such high

accuracies? In v1 of the NYU-Depth dataset, there are

eight out of 13 classes (cabinet, ceiling, floor, picture,

table, wall, bed, blind) which are planar and out of the

Fig. 11: Examples of the semantic labeling results on the
SUN3D dataset. The top row shows the intensity images, the
bottom row are the ground truths and the middle row are
our labeling results. The representative colors are shown in
the figure legend at the bottom. (Best viewed in color)

Table 9: Comparison of results on the NYU-Depth v2
Dataset (4-class labeling task): Our method achieved the sec-
ond best performance in terms of weighted average Jaccard
index (WAJI).

Perf.
SC-Silberman
et al (2012)

LP-Silberman
et al (2012)

Ren et al
(2012)

SVM-Gupta
et al (2013)

This paper

WAJI 56.31 53.4 59.19 64.81 62.66

Table 10: Comparison of results on the NYU-Depth v2
Dataset (40-class labeling task): Our method achieved sec-
ond best performance in terms of weighted average Jaccard
index (WAJI).

Perf.
SC-Silberman
et al (2012)

Ren et al
(2012)

SVM-Gupta
et al (2013)

CNN-Gupta
et al (2014)

This paper

WAJI 38.2 37.6 43.9 47.0 42.1

remaining classes, four (tv, sofa, bookshelf, window) are

loosely planar. The planar classes correspond to 77.21%

while the loosely planar classes correspond to 22.79%

of the total labeled data. Second, the floor or wall or

other classes may have varying textures across different

images. However, with depth information in place, we

can determine the correct class of the object. Similarly

for v2 of the NYU-Depth dataset, there are nearly ten

out of 22 classes (bed, blind, cabinet, ceiling, floor, pic-

ture, table, wall, counter, door) which are planar and

out of the remaining classes 6 are loosely planar (tv,

sofa, bookshelf, window, box, sink). The planar classes

correspond to 62.2% while the loosely planar classes

correspond to 14.3% of the total labeled data. There is

a similar trend on the SUN3D database.
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6.2.3 Timing Analysis

Our approach is efficient at test time, since the pro-

posed graph energies are sub-modular and approximate

inference can be made using graph-cuts. Empirically,

we found average testing time per image to be ∼ 1.6

sec for NYU-Depth v1, ∼ 1.7 sec for NYU-Depth v2

and ∼ 1.4 sec for the SUN3D database. For parameter

learning on the training set, it took ∼ 17 hrs for NYU-

Depth v1, ∼ 12 hrs for NYU-Depth v2 and ∼ 45 min

for the SUN3D database. The RDF training took ∼ 4

hrs, ∼ 2 hrs and ∼ 7 mins on the NYU-Depth v1, v2

and SUN3D databases respectively.

6.3 Discussion

It may be of interest to know why we used a hierar-

chical ensemble learning scheme to combine posteriors

defined on pixels and planar regions. We prefer to use

the proposed scheme because it combines the poste-

riors on the fly and thus saves a reasonable amount

of training time. Alternate ensemble learning meth-

ods such as Boosting and Bagging require considerable

training data and take much time. It must be noted

that we used graph-cuts for making approximate infer-

ence during the S-SVM training. This method is not al-

ways precisely accurate. Moreover, only a limited set of

constraints (the working set) from the original infinite

number of constraints are used during training. These

approximations can sometimes lead to unsatisfactory

performance. However, we minimized this behavior by

initializing the parameters with values that gave the

best performance on the validation set. This heuristic

worked well for our case and enhanced the labeling ac-

curacy.

It can be seen that indoor scene labeling is a chal-

lenging problem due to the diverse nature of the scenes.

The major reason for the low reported scene labeling

accuracies (see Table 2) is the presence of a large num-

ber of objects with varying textures and layouts across

different images. These varied appearances of objects

cause many ambiguities. Also there are many bland re-

gions in the scenes, which introduce an additional chal-

lenge for a correct segmentation. Many times class er-

rors are due to the confusion between two similar classes

e.g., as evident in the confusion matrices (Fig. 12), door

is usually confused with wall, blind with window, sink

with counter and sofa with bed. Despite the incorpora-

tion of the geometrical context, an unusual confusion

occurs between ceiling and wall. The reason is that

the depth estimates in the regions close to the upper

boundary of the scenes were not accurate and this is

the typical location where the ceiling normally occurs

in the majority of the scenes. The planes extracted in

this region give a horizontal orientation (instead of ver-

tical) which contributes to this misclassification, aided

by the fact that the walls and ceilings usually have sim-

ilar appearances.

The NYU corpus captures natural indoor scene con-

ditions which are common in everyday life scenarios.

As an example, the dataset contains large illumination

variations (e.g., for scenes of offices, stores) which cor-

rectly capture the indoor conditions. Some misclassifi-

cations are possibly due to these illumination variations

and specular surfaces e.g., the window or the reflecting

mirror was confused with the light source. Another

major challenge relates to the long-tail distribution of

object categories, where a small number of categories

appear frequently in indoor scenes while others are rare.

For example, the top ten most frequent classes out of

a total of 894 classes in the NYU v2 dataset consti-

tutes over 65% of the total labelled data. This trans-

lates into a somewhat unbalanced dataset with an in-

sufficient representation of many semantic classes in the

training set (Ren et al, 2012). The labeled portion of the

SUN3D database was insufficient for training (because

the database is under development). This explains why

the achieved accuracies for this database are on the low

side (see Table 2, Fig. 12). The availability of more and

higher quality training data for each class will certainly

improve the performance of scene labeling frameworks.

The removal of unwanted artifacts such as illumina-

tion variations and shadows can also help in improv-

ing the segmentation accuracy (Khan et al, 2014a). In

short, the challenging indoor scene classification task is

far from being solved and requires further investigation

both in terms of new techniques and data for testing

and bench-marking.

7 Conclusion

This paper presented a novel CRF model for seman-

tic labeling of indoor scenes. The proposed model uses

both appearance and geometry information. The geom-

etry of indoor planar surfaces was approximated using a

proposed robust region growing algorithm for segmen-

tation. The approximate geometry was combined with

appearance-based information and a location prior in

the unary term. A learned combination of boundaries

was used to define the spatial discontinuity across an

image. The proposed model also captured long-range

interactions by defining cliques on the dominant planar

surfaces. The parameters of our model were learned us-

ing a single slack formulation of the rescaled margin

cutting plane algorithm. We extensively evaluated our
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(a) NYU-Depth v1 (b) NYU-Depth v2 (c) SUN3D

Fig. 12: Confusion Matrices for NYU-Depth Dataset: The accuracies in each confusion matrix sum up to 100% along each
row. All the class accuracies shown on the diagonal are rounded to the closest integer for clarity. (Best viewed in color)

scheme on both versions of the NYU-Depth and the re-

cent SUN3D database and reported comparisons and

improvements over existing works. As a future work,

we will extend the proposed model to holistically reason

about indoor scenes and to understand the rich inter-

actions between scene elements.
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A Disintegration of Higher-Order Energies

In this appendix, we will show how the higher-order energies
can be minimized using graph cuts. Since, graph cuts can
efficiently minimize submodular functions, we will transform
our higher-order energy function (Eq. 9) to a submodular
second-order energy function. For the case of both αβ-swap
and α-expansion move making algorithms, we will explain
this transformation and the process of optimal moves com-
putation3. All of the previously defined notations are used
in the same context and all of the newly introduced symbols
are defined in this section. The function that accounts for the
number of disagreeing nodes in a clique is defined as:

n`(yc) =
∑
i∈c

w`i1yi=`

The function 1yi=` is a zero-one indicator function that re-
turns a unit value when yi = `. We suppose here that weights
are symmetric for all labels ` ∈ L i.e., w`i = wi. Further, for

3 The development of this section is similar to (Kohli et al,
2009). We also used the same notation - wherever possible -
to allow the reader to easily sort out differences and common-
alities.

our implementation we set wi = 1 ∀i ∈ c. This setting satis-
fies the required constraints for these parameters, i.e.,

w`i ≥ 0 and
∑
i∈c

w`i = #c ∀` ∈ L.

We define a summation function that adds the weights for a
subset s of c,

W (s) =
∑
i∈s

w`i = #s ∀` ∈ L.

A.1 Disintegration of Higher-Order Energies to

Second-Order Sub-Modular Energies for Swap Moves

Suppose, in a clique ‘c’, the locations of the active nodes is
represented by a set of indices ca. The nodes which remain in-
active during the move making process are termed the passive
nodes. Their locations are denoted by c̄a = {c \ ∀ci ∈ ca}.
The corresponding set of available moves to the swap move
making algorithm are encoded in the form of a vector tca .
For the sake of a simple demonstration, let us focus on the
two class labeling problem i.e., ` ∈ {0, 1}. The induced la-
beling is the combination of the old labeling for the inac-
tive nodes and the new labeling for the active nodes i.e.,
ync = y◦c̄a ∪ Tαβ(y◦ca , tca). If ync denotes the new labeling
induced by move tca and y◦c denotes the old labeling, we can
define the energy of move for an αβ swap as:

ψmc (tca) = ψc(ync ) = ψc(y◦c̄a ∪ Tαβ(y◦ca , tca))

= min
`∈L
{λmax − (λmax − λ`)exp(−

W (c)−n`(y◦c̄a∪Tαβ(y◦
ca
,tca ))

Q`
)}

= min
`∈L
{λmax − (λmax − λα)exp( −W (c)−nm

0
(tca )

Qα
),

λmax − (λmax − λβ)exp( −W (c−ca)+n
m
0

(tca )

Qβ
)},

where, W (ca) = nm0 (tca) + nm1 (tca). The minimization op-
eration in the above equation can be replaced by defining a
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piecewise function:

ψmc (tca) =



λmax − (λmax − λα)exp( −W (c)−nm
0

(tca )

Qα
)

if nm0 (tca) > %αβ(W (c)

Qα
− W (c−ca)

Qβ

− log(λmax−λα
λmax−λβ

)),

λmax − (λmax − λβ)exp( −W (c−ca)+n
m
0

(tca )

Qβ
)

if nm0 (tca) < %αβ(W (c)

Qα
− W (c−ca)

Qβ

− log(λmax−λα
λmax−λβ

)),

where, %αβ =
QαQβ

Qα+Qβ
. The function nm` (tca) is defined as:

nm` (tca) =
∑
i∈ca

wiδ`(ti).

From Theorem 1 in (Kohli et al, 2009), the energy de-
fined above can be transformed to the submodular quadratic
pseudo-boolean function with two binary meta variables. In
this form the αβ-swap algorithm can be used for minimizing
the energy function.

A.2 Disintegration of Higher-Order Energies to

Second-Order Sub-Modular Energies for Expansion

Moves

Suppose, in a clique ‘c’, the location of the nodes with label
` is represented by a set of indices c`. The current labeling
solution is denoted by y◦c .

If the dominant label is denoted by d ∈ L in the current
labeling y◦c is,

s.t W (cd) > W (c)−Qd where d 6= α,

there must be one dominant label:

Qa +Qb < W (c) ∀a 6= b ∈ L,

ψmc (tc) = ψc(Tα(y◦c , tc))

= min
`∈L
{λmax − (λmax − λα)exp(−

∑
i∈c
witi

Qα
),

λmax − (λmax − λd)exp(−
W (c)−

∑
i∈c
witi

Qd
)}.

The minimization operator in the above function can be re-
placed by a piecewise function:

ψmc (tc, tcd) =



λmax − (λmax − λα)exp(−n
m
0

(tc)

Qα
)

if nm0 (tc) > %αd(W (c)

Qα

− log(λmax−λα
λmax−λd

)),

λmax − (λmax − λd)exp(−W (c)−nm
0

(tcd )

Qd
)

if nm0 (tc) < %αd(W (c)

Qα

− log(λmax−λα
λmax−λd

)),

where, %αd = QαQd

Qα+Qd
and function nm` (tc) is defined as:

nm` (tc) =
∑
i∈c

wiδ`(ti).

From Theorem 2 in (Kohli et al, 2009), the energy de-
fined above can be transformed to the submodular quadratic
pseudo-boolean function with two binary meta variables. In
this form the α-expansion algorithm can be used for minimiz-
ing the energy function.
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