Supplementary Material for "Transductive Learning for Zero-Shot Object Detection"

Shafin Rahman^{*†}, Salman Khan^{‡*} and Nick Barnes^{*†} *Australian National University, [†]Data61-CSIRO, [‡]Inception Institute of AI firstname.lastname@anu.edu.au

Figure 1: More qualitative results of ZSD (top two rows) and GZSD (bottom two rows). Red and green bounding boxes represent unseen and seen classes respectively.

1. Qualitative Results

In Fig. 1, we show more qualitative results of our approach.

2. Validation Experiment

To fix λ and t_h , we remove the term $L_d(u)$ and $L'_d(u)$ from Eq. 3 so that the loss becomes independent of η and β . Now, for different values of $t_h = \{.2, .3, .4\}$ and

 $\lambda = \{.1, .3, .5, .6, .8, 1\}$, we perform a grid search on traditional detection task. In Table 1(a), we report the results of such validation experiment where $t_h = .3$ and $\lambda = .2$ performs the best. The reason $t_h = .3$ works the best is that the same value was used during fixed pseudo-labeling for the seen classes. The hyper-parameter λ controls the balance between fixed and dynamic pseudo-labeling. When $\lambda = 1$, the network is trained with only fixed pseudolabeling. Thus, traditional detection performs similarly (38.25, 38.95, 39.48) across different t_h . Then, keeping all the chosen hyper-parameters fixed, we run another grid search for $\beta = \{.1, .3, .5, .7, .9, 1\}$ and $\eta = \{1, 2, 3, 4, 5\}$ on the same traditional detection task. β and η control the object/background imbalance of dynamic pseudo-labeling. Table 1(b) shows that $\beta = 0.1$ and $\eta = 1$ are the recommended values from our validation experiments.

 $\lambda(\rightarrow)$.2 .4 .5 .6 .8 1 $t_h=.2$ 0.0 0.0 0.0 0.0 38.80 38.25 $t_h=.3$ 39.57 37.51 24.91 0.7 37.87 38.95 0.0 0.0 0.00.0 0.55 39.48 $t_h=.4$ (b) $L_d = L_d(s) + L_d(u) + L'_d(u)$ case: Varying β and η .1 .3 .5 .7 .9 $\beta(\rightarrow)$ 1 43.38 39.14 40.98 41.73 $\eta = 1$ 41.06 38.81 39.05 39.40 $\eta=2$ 41.59 37.65 41.47 39.98 40.66 41.13 41.89 40.47 39.65 39.87 η=3 40.64 40.15 42.42 39.82 40.48 40.00 $\eta=4$ 40.22 37.85 $\eta = 5$ 36.73 41.73 32.94 40.94

(a) $L_d = L_d(s)$ case: Varying λ and t_h with $L_d(u) = L'_d(u) = 0$

Table 1: mAP scores of validation experiments. Selected hyperparameters: $\lambda = .2$, $t_h = 0.3$, $\beta = .1$ and $\eta = 1$.