Appendix A. Supplementary Materials

Appendix A.1. iTAML vs Other Meta Algorithms

Lemma 1. Given a set of feature space parameters θ and task classification parameters $\phi = {\phi_1, \phi_2, \dots, \phi_T}$, after r inner loop updates, iTAML's meta update gradient for task i is given by,

$$g_{itaml}(i) = g_{i,0} + \dots + g_{i,r-1},$$

where, $g_{i,j}$ is the j^{th} gradient update with respect to $\{\theta, \phi_i\}$ on a single micro-batch.

Proof. Let $\Phi_i = \{\theta, \phi_i\}$ is the set of feature-space parameters and task-specific parameters of the task i, $\mathcal{L}_i(\Phi_i)$ is the loss calculated on a specific micro-batch \mathcal{B}^i_μ for task i using Φ_i , and α is the inner loop learning rate. The parameters update is given by,

$$\Phi_{i,r} = \Phi_{i,r-1} - \alpha \nabla_{\Phi_{i,r-1}} \mathcal{L}_i(\Phi_{i,r-1}), \text{ where } \Phi_{i,0} = \Phi_i.$$

Lets take $g_{i,j} = \bigvee_{\Phi_{i,j}} \mathcal{L}_i(\Phi_{i,j}),$

$$\Phi_{i,r} = \Phi_{i,r-1} - \alpha g_{i,r-1}.$$

Using the meta gradient update rule defined in Reptile [19] i.e., $(\theta_{i,0} - \theta_{i,r})/\alpha$, we have,

$$g_{itaml}(i) = \frac{\theta_{i,0} - \theta_{i,r}}{\alpha}$$

$$= \frac{\theta_{i,0} - (\theta_{i,r-1} - \alpha g_{i,r-1})}{\alpha}$$

$$\vdots$$

$$= \frac{\theta_{i,0} - (\theta_{i,0} - \alpha g_{i,0} - \dots - \alpha g_{i,r-1})}{\alpha}$$

$$= g_{i,0} + g_{i,1} + \dots + g_{i,r-1}$$

Lemma 2. Given a set of feature space parameters θ and task classification parameters $\phi = {\phi_1, \phi_2, \dots, \phi_T}$, *iTAML* allows to keep the number of inner loop updates $r \ge 1$.

Proof. For a given task t, there will be t gradients available for meta update,

$$g_{itaml} = \eta \frac{1}{t} \sum_{i=1}^{t} g_{itaml}(i)$$
$$= \exp\left(-\beta \frac{t}{T}\right) \cdot \frac{1}{t} \cdot \sum_{i=1}^{t} \sum_{j=1}^{r-1} g_{i,j}.$$

Reptile algorithm requires r > 1 since, r = 1 would result in joint training in Reptile algorithm. Reptile updates the parameters with respect to $\{\theta, \phi\}$ in the inner loop, while iTAML updates the parameters with respect to $\{\theta, \phi_i\}$ in the inner loop of task *i*. When r = 1,

$$g_{itaml} = \exp\left(-\beta\frac{t}{T}\right) \cdot \frac{1}{t} \cdot \sum_{i=1}^{t} g_{i,0}$$

$$= \exp\left(-\beta\frac{t}{T}\right) \cdot \frac{1}{t} \cdot \sum_{i}^{t} \nabla_{\Phi_{i,0}} \mathcal{L}_{i}(\Phi_{i,0})$$

$$= \underbrace{\exp\left(-\beta\frac{t}{T}\right)}_{\text{decaying factor}} \cdot \frac{1}{t} \cdot \sum_{i=1}^{t} \underbrace{\nabla_{\{\theta,\phi_i\}} \mathcal{L}_{i}(\{\theta,\phi_i\})}_{\text{task-specific gradient}}$$

$$\neq \frac{1}{t} \sum_{i=1}^{t} \nabla_{\{\theta,\phi\}} \mathcal{L}_{i}(\{\theta,\phi\}) = g_{joint}$$

Figure 8: Classification accuracy on CIFAR100, with 2 tasks. Exemplar memory is set to 2000 samples and *ResNet*-18(1/3) is used for training. We keep p = 20 for experiments on data continuum.

Variation on *b*: iTAML uses a low *b* value i.e., b=1. Parameter *b* denotes the number of epochs for model update during adaptation. We observed that higher *b* values do not have a significant impact on performance, but the time complexity increases linearly with *b*. Below, we report experimental results by changing *b* from 1 to 5 and note that the accuracies does not improve significantly.

b	1	2	3	4	5
Accuracy	78.24%	78.48%	78.48%	78.53%	78.50%

Note on SVHN: For SVHN dataset, we keep r = 4 for the last task. This is due to the fact that, SVHN has a lower

variance in the data distribution and which forces the model to stuck at the early stages of local minima.

Backends and Optimizers: We evaluate our method with various architectural backends. Even with a very small model having (0.49M) parameters, iTAML can achieve 69.94% accuracy, with a gain of 13.46% over second-best (RPS-net 77.5M) method. ResNet-18 full model gives 80.27%. Further, iTAML is a modular algorithm, we can plug any optimizer into it. We evaluate iTAML with SGD, Adam [12] and RAdam [16], and respectively achieve a classification accuracy of 70.34%, 74.83% and 76.63% with these optimizers.