Appendix A. Supplementary Materials
Appendix A.1. iTAML vs Other Meta Algorithms

Lemma 1. Given a set of feature space parameters 0 and
task classification parameters ¢ = {¢1, da, ... o1}, after r
inner loop updates, iTAML’s meta update gradient for task
1 is given by,

gitaml(i) =gi0o+ -+ Gir—1,

where, g; j is the j*" gradient update with respect to {0, ¢; }
on a single micro-batch.

Proof. Let ®; = {0, ¢;} is the set of feature-space parame-
ters and task-specific parameters of the task ¢, £;(®;) is the
loss calculated on a specific micro-batch BZ for task ¢ using
®,;, and « is the inner loop learning rate. The parameters
update is given by,

(I)i,r = '1),;7,”_1 — OLV@ Ei(q)i,r—l)a where (1)7370 = (pz

i,r—1
Lets take g; j = Vg, ; Li(P; ;).
i = Pip-1 — Gir-1.

Using the meta gradient update rule defined in Reptile [19]
ie., (6;0 — 6;,r)/c, we have,

. 0,0 — 0;,
gitaml(Z) = %
_ 0i0 — (Gi,r—l — agi,r—l)
1o
00— (00 —agio— " —agi,1)

o
=giotgi1+ -+ gir1

O

Lemma 2. Given a set of feature space parameters 0 and
task classification parameters ¢ = {¢1, ¢, . .. o1}, ITAML
allows to keep the number of inner loop updates r > 1.

Proof. For a given task t, there will be ¢ gradients available
for meta update,

t

1 .

gitaml = 77; E gitaml (Z)
i=1

¢ 1 t r—1
= exp (_BT> : n : Zzgi,j-

i=1 j=1

Reptile algorithm requires r > 1 since, r = 1 would result
in joint training in Reptile algorithm. Reptile updates the
parameters with respect to {6, ¢} in the inner loop, while

iTAML updates the parameters with respect to {0, ¢;} in
the inner loop of task . When r = 1,

t
t 1
Gitaml = €XpP <_5T> 7 ;91',0

t\ 1 &
= exp <—5T) T Z Vo, ,Li(Pio)
t\ 1 <
= exp <_BT) ; : ZV{G,@}Ei({oa ¢z})
i=1

task-specific gradient

decaying factor

1 t
% 3 V0 Li{6:6)) = Gjoin
=1

Appendix A.2. Additional Results

CIFAR-100: Learning 50 Classes at a time

=#- DMC MAS = iCaRL
—+ LwF EWC RPS
RWalk =& Finetuning =< Ours
78't__ - S| ~# FixedRep
S " ~——
\$§:~~~ ________
\\\\\\\\:_~. _________
SSSs T et Tt T
SESSs . TNva ————
° SS ~ Ssoo
> &8 \\\\\\ \\\\\\ \‘===
> SO IR SSssg
g \\\\\ o ss TS
E SOOS >J \\\ ‘:::;
= ~ ST
~ ~ S ~
U 58 SN S, S
v ~ ~ S
~ ~ SS
< AN so S~
SON S, ~o
~
\\\ \\\ \\0
~ ~
48 A Soo 0N
~ \\
\\ \\
A
\\
\\
~
b |
38
50 60 70 80 90 100

Number of Classes

Figure 8: Classification accuracy on CIFARI100, with 2
tasks. Exemplar memory is set to 2000 samples and ResNet-
18(1/3) is used for training. We keep p = 20 for experi-
ments on data continuum.

Variation on b: iTAML uses a low b value i.e., b=1. Param-
eter b denotes the number of epochs for model update during
adaptation. We observed that higher b values do not have a
significant impact on performance, but the time complexity
increases linearly with b. Below, we report experimental re-
sults by changing b from 1 to 5 and note that the accuracies
does not improve significantly.

b 1 2 3 4 5
78.24% 18.48% 18.48% 18.53% 78.50%

Accuracy

Note on SVHN: For SVHN dataset, we keep r = 4 for the
last task. This is due to the fact that, SVHN has a lower

variance in the data distribution and which forces the model
to stuck at the early stages of local minima.

Backends and Optimizers: We evaluate our method with
various architectural backends. Even with a very small
model having (0.49M) parameters, iTAML can achieve
69.94% accuracy, with a gain of 13.46% over second-best
(RPS-net 77.5M) method. ResNet-18 full model gives
80.27%. Further, iTAML is a modular algorithm, we
can plug any optimizer into it. We evaluate iTAML with
SGD, Adam [12] and RAdam [16], and respectively achieve
a classification accuracy of 70.34%, 74.83% and 76.63%
with these optimizers.

