Appendix A. Supplementary Materials
Appendix A.1. iTAML vs Other Meta Algorithms

Lemma 1. Given a set of feature space parameters 0 and
task classification parameters ¢ = {¢1, da, ... o1}, after r
inner loop updates, iTAML’s meta update gradient for task
1 is given by,

gitaml(i) =gi0o+ -+ Gir—1,

where, g; j is the j*" gradient update with respect to {0, ¢; }
on a single micro-batch.

Proof. Let ®; = {0, ¢;} is the set of feature-space parame-
ters and task-specific parameters of the task ¢, £;(®;) is the
loss calculated on a specific micro-batch BZ for task ¢ using
®,;, and « is the inner loop learning rate. The parameters
update is given by,
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Lets take g; j = Vg, ; Li(P; ;).
i = Pip-1 — Gir-1.

Using the meta gradient update rule defined in Reptile [19]
ie., (6;0 — 6;,r)/c, we have,
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Lemma 2. Given a set of feature space parameters 0 and
task classification parameters ¢ = {¢1, ¢, . .. o1}, ITAML
allows to keep the number of inner loop updates r > 1.

Proof. For a given task t, there will be ¢ gradients available
for meta update,
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Reptile algorithm requires r > 1 since, r = 1 would result
in joint training in Reptile algorithm. Reptile updates the
parameters with respect to {6, ¢} in the inner loop, while

iTAML updates the parameters with respect to {0, ¢;} in
the inner loop of task . When r = 1,
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Appendix A.2. Additional Results

CIFAR-100: Learning 50 Classes at a time
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Figure 8: Classification accuracy on CIFARI100, with 2
tasks. Exemplar memory is set to 2000 samples and ResNet-
18(1/3) is used for training. We keep p = 20 for experi-
ments on data continuum.

Variation on b: iTAML uses a low b value i.e., b=1. Param-
eter b denotes the number of epochs for model update during
adaptation. We observed that higher b values do not have a
significant impact on performance, but the time complexity
increases linearly with b. Below, we report experimental re-
sults by changing b from 1 to 5 and note that the accuracies
does not improve significantly.

b 1 2 3 4 5
78.24%  18.48% 18.48%  18.53%  78.50%

Accuracy

Note on SVHN: For SVHN dataset, we keep r = 4 for the
last task. This is due to the fact that, SVHN has a lower



variance in the data distribution and which forces the model
to stuck at the early stages of local minima.

Backends and Optimizers: We evaluate our method with
various architectural backends. Even with a very small
model having (0.49M) parameters, iTAML can achieve
69.94% accuracy, with a gain of 13.46% over second-best
(RPS-net 77.5M) method. ResNet-18 full model gives
80.27%. Further, iTAML is a modular algorithm, we
can plug any optimizer into it. We evaluate iTAML with
SGD, Adam [12] and RAdam [ 16], and respectively achieve
a classification accuracy of 70.34%, 74.83% and 76.63%
with these optimizers.



