
Appendix A. Supplementary Materials
Appendix A.1. iTAML vs Other Meta Algorithms
Lemma 1. Given a set of feature space parameters ✓ and
task classification parameters � = {�1,�2, . . .�T }, after r
inner loop updates, iTAML’s meta update gradient for task
i is given by,

gitaml(i) = gi,0 + · · ·+ gi,r�1,

where, gi,j is the jth gradient update with respect to {✓,�i}

on a single micro-batch.

Proof. Let �i = {✓,�i} is the set of feature-space parame-
ters and task-specific parameters of the task i, Li(�i) is the
loss calculated on a specific micro-batch B

i

µ
for task i using

�i, and ↵ is the inner loop learning rate. The parameters
update is given by,

�i,r = �i,r�1 � ↵r�i,r�1Li(�i,r�1), where �i,0 = �i.

Lets take gi,j = r�i,jLi(�i,j),

�i,r = �i,r�1 � ↵gi,r�1.

Using the meta gradient update rule defined in Reptile [19]
i.e., (✓i,0 � ✓i,r)/↵, we have,

gitaml(i) =
✓i,0 � ✓i,r

↵

=
✓i,0 � (✓i,r�1 � ↵gi,r�1)

↵
...

=
✓i,0 � (✓i,0 � ↵gi,0 � · · ·� ↵gi,r�1)

↵

= gi,0 + gi,1 + · · ·+ gi,r�1

Lemma 2. Given a set of feature space parameters ✓ and
task classification parameters � = {�1,�2, . . .�T }, iTAML
allows to keep the number of inner loop updates r � 1.

Proof. For a given task t, there will be t gradients available
for meta update,

gitaml = ⌘
1

t

tX

i=1

gitaml(i)

= exp

✓
��

t

T

◆
·
1

t
·

tX

i=1

r�1X

j=1

gi,j .

Reptile algorithm requires r > 1 since, r = 1 would result
in joint training in Reptile algorithm. Reptile updates the
parameters with respect to {✓,�} in the inner loop, while

iTAML updates the parameters with respect to {✓,�i} in
the inner loop of task i. When r = 1,

gitaml = exp

✓
��

t

T

◆
·
1

t
·

tX

i=1

gi,0

= exp

✓
��

t

T

◆
·
1

t
·

tX

i

r�i,0Li(�i,0)

= exp

✓
��

t

T

◆

| {z }
decaying factor

·
1

t
·

tX

i=1

r{✓,�i}Li({✓,�i})| {z }
task-specific gradient

6=
1

t

tX

i=1

r{✓,�}Li({✓,�}) = gjoint

Appendix A.2. Additional Results

Figure 8: Classification accuracy on CIFAR100, with 2
tasks. Exemplar memory is set to 2000 samples and ResNet-
18(1/3) is used for training. We keep p = 20 for experi-
ments on data continuum.

Variation on b: iTAML uses a low b value i.e., b=1. Param-
eter b denotes the number of epochs for model update during
adaptation. We observed that higher b values do not have a
significant impact on performance, but the time complexity
increases linearly with b. Below, we report experimental re-
sults by changing b from 1 to 5 and note that the accuracies
does not improve significantly.

b 1 2 3 4 5

Accuracy 78.24% 78.48% 78.48% 78.53% 78.50%

Note on SVHN: For SVHN dataset, we keep r = 4 for the
last task. This is due to the fact that, SVHN has a lower



variance in the data distribution and which forces the model
to stuck at the early stages of local minima.
Backends and Optimizers: We evaluate our method with
various architectural backends. Even with a very small
model having (0.49M ) parameters, iTAML can achieve
69.94% accuracy, with a gain of 13.46% over second-best
(RPS-net 77.5M ) method. ResNet-18 full model gives
80.27%. Further, iTAML is a modular algorithm, we
can plug any optimizer into it. We evaluate iTAML with
SGD, Adam [12] and RAdam [16], and respectively achieve
a classification accuracy of 70.34%, 74.83% and 76.63%
with these optimizers.


