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Table 1: Ablation: the proposed denoising network is
trained using the real RAW images from the training set
of SIDD [1]. Evaluation is performed on the RAW images
from the validation set of SIDD.

# RRG # DAB # channels SA CA PSNR

4 8 64 X X 51.85

4 8 64 X 51.52

4 8 64 X 51.63

5 10 64 X X 51.97

4 8 128 X X 52.03

1. Additional Ablations

In the main manuscript, we provide ablation study for the
RAW2RGB branch of CycleISP. The RAW2RGB branch
takes a clean RAW image and transforms it to a clean sRGB
image (when we keep the noise injection module switched
off). Those ablation experiments show the impact of each
component on the quality of synthesized clean sRGB data.

Denoising network: Here, we ablate the effect of individ-
ual contributions to the proposed denoising network. We
train our network for the task of RAW denoising using the
real training data of SIDD [1]. Since the purpose is to ex-
amine the performance of the proposed denoising network,
we do not include any synthetic data (generated with the
CycleISP) for this ablation study. All the denoising exper-
iments in the paper are performed using the network that
consists of 4 recursive residual groups (RRGs), where each
RRG further contains 8 dual attention blocks (DABs); we
termed it as base network settings. The number of output
channels for all the convolutional layers in RRG modules
is set to C = 64, except for the first layer of the channel
attention branch that has C

r channel dimension. Where r is
set to 16 in our experiments. Table 1 summarizes the re-
sults. The first row shows that we obtain PSNR of 51.85 dB
with the base network settings. Removing either the spatial
attention (SA) branch or the channel attention (CA) branch
reduces the network performance (see row 2 and row 3).

Table 2: Ablation: incorporating real images (from the
SIDD [1]) and synthetic images (generated with our Cy-
cleISP) for training the proposed denoising network. Eval-
uation is performed on the RAW images from the validation
set of SIDD [1].

Real Data Synthetic Data PSNR

X 51.85

X 50.45

X X 52.41

Furthermore, the increase in the depth and width of the net-
work improves accuracy in terms of PSNR as compared to
the base settings (see rows 4 and 5), but at a high computa-
tional cost and a large memory footprint. We decide to use
4 RRGs and 8 DABs (base settings) in the main paper so as
to have a good trade-off between the speed and accuracy.

Combining synthetic and real data: The SIDD bench-
mark dataset [1] contains 320 real (high-resolution) image
pairs for training and 1280 image pairs for validation. The
denoising results we present in the paper are obtained using
the network that is trained on a combined dataset, incor-
porating both real images from the SIDD [1] and synthetic
images generated with the CycleISP. Here, we perform two
additional experiments to evaluate the performance of the
denoising network: (1) training network only on the real
data from SIDD [1], and (2) training network only on the
synthetic data generated with the CycleISP. Table 2 shows
that the network trained only on real data or synthetic data
yields results with PSNR 51.85 dB (row 1) and 50.45 dB
(row 2), respectively. Whereas the network trained on the
dataset containing both real and synthetic images is much
more effective in removing noise (see row 3).

Figure 1c depicts that the network trained on real data
cannot completely remove noise, and produces image with
splotchy texture and less neat structural content. It may be
partially due to the small training dataset, and partially be-
cause of the imperfect ground-truth images. For instance,
we can see in Figure 1b that the ground-truth image is not



(a) Noisy (b) Ground-truth (c) Real (d) Synthetic (e) Real+Synthetic

Figure 1: Ablation to study the effect of real and synthetic data on the network performance. (a) Noisy input image. (b)
(Nearly) noise-free reference image. (c) Output the network trained on real data from SIDD [1]. (d) Output of the network
trained on synthetic data generated with the proposed CycleISP. (e) Output of the network trained on combined dataset,
incorporating both real images from the SIDD [1] and synthetic images generated with the CycleISP.

completely noise-free.
While the network which is trained on synthetic data

generate images that are sharp and noise-free, it often pro-
duces dark image values which are not perceptually-faithful
to the ground-truth. For example, see the alphabets ‘E’ and
‘X’ in Figure 1d. It may be due to the noise model that
we use in the noise injection module of the CycleISP. We
use the same procedure for noise modeling as in [3]. Al-
though the noise modeling method of [3] is reasonable,
it does not take into account the effect of clipping opera-
tion on the image values. Therefore, by incorporating more
sophisticated noise modeling techniques (e.g., [6]) in the
noise injection module, we might be able to further im-
prove the performance of the denoising network. Finally,
Figure 1e shows that when the network is trained on a com-
bined dataset (that includes both real and synthetic images),
it effectively removes noise and generates results that are
closer to the ground-truth in appearance.

2. Results for Denoising

In this section we provide additional results for denois-
ing the sRGB images and RAW images.

Denoising sRGB images of SIDD [1]: Figures 2, 3 and 4
show the results produced by our method and those of the
state-of-the-art. Our method performs favorably against the
RIDNet [2] and CBDNet [7]. Notably, our method gener-
ates clean, sharp, and artifact-free results, while preserving
the true image details.

Denoising RAW images of DND [11]: Figure 5 illustrates
the results of different algorithms. Our method yields im-
ages with better visual quality and PSNR as compared to
other competing approaches [3, 12, 4].

3. Color Matching for Stereoscopic Cinema

In Figure 6 and Figure 7, we compare the results of
matching colors of the source view to the target view by

using the proposed method and three other techniques [9,
10, 13].
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15.72 dB 22.82 dB 31.79 dB 34.89 dB

17.68 dB 23.54 dB 32.37 dB 33.14 dB

18.02 dB 25.88 dB 33.75 dB 34.75 dB

18.32 dB 20.38 dB 32.07 dB 32.90 dB

19.13 dB 28.49 dB 34.78 dB 38.12 dB
Noisy CBDNet [7] RIDNet [2] Ours Reference

Figure 2: Denoising sRGB images from the SIDD benchmark dataset [1]. RIDNet [2] and CBDNet [7] generates images
with splotchy texture (see row 3 and row 4). Our method preserves the right image structure (see row 2 and row 3) and
reproduces images with better color and without chroma artifacts (see rows 1 and 5).



14.60 dB 23.75 dB 26.78 dB 31.55 dB

17.59 dB 27.67 dB 34.89 dB 35.63 dB

22.83 dB 31.38 dB 38.93 dB 39.86 dB

18.38 dB 29.38 dB 35.96 dB 37.53 dB

21.26 dB 31.54 dB 38.41 dB 39.83 dB
Noisy CBDNet [7] RIDNet [2] Ours Reference

Figure 3: Denoising sRGB images from the SIDD benchmark dataset [1]. Compared to the state-of-the-art [2, 7], our method
provides results that are visually pleasant and closer to the ground-truth, as well as have better PSNR.



16.72 dB 19.43 dB 33.00 dB 33.37 dB

18.16 dB 20.35 dB 29.83 dB 30.22 dB

16.50 dB 22.53 dB 33.62 dB 34.10 dB

19.05 dB 29.67 dB 35.78 dB 37.06 dB

17.61 dB 23.55 dB 33.50 dB 35.02 dB
Noisy CBDNet [7] RIDNet [2] Ours Reference

Figure 4: Denoising results of different methods on challenging sRGB images from the SIDD dataset [1].



PSNR(RAW) 37.39 dB 38.09 dB 38.80 dB 39.03 dB
PSNR(sRGB) 30.32 dB 30.68 dB 32.41 dB 32.52 dB

PSNR(RAW) 35.90 dB 38.24 dB 37.37 dB 40.43 dB
PSNR(sRGB) 31.53 dB 32.42 dB 35.49 dB 36.20 dB

PSNR(RAW) 44.47 dB 45.22 dB 46.88 dB 47.15 dB
PSNR(sRGB) 38.36 dB 38.65 dB 40.79 dB 41.11 dB

PSNR(RAW) 46.39 dB 47.17 dB 49.15 dB 49.26 dB
PSNR(sRGB) 35.10 dB 35.35 dB 37.77 dB 38.00 dB

Noisy BM3D [4] N3Net [12] UPI [3] Ours
Figure 5: Denoising RAW images from the DND benchmark dataset [11]. The PSNR scores for all competing methods are
obtained from the website of the DND evaluation server [5]. For better visualization, RAW images are converted to the sRGB
color space by the server [5] using the camera imaging pipeline of [8].



(a) Target view. (PSNR) (b) Source view. 30.01 dB

(c) Reinhard et al. [13]. 34.44 dB (d) Kotera [9]. 32.48 dB

(e) Pitié et al. [10]. 34.59 dB (f) Ours. 36.86 dB

Figure 6: Example of color matching in stereo pairs. The colors of source view are matched to the target view by different
algorithms. Compare the sky and clouds. Images are property of Mammoth HD Inc.



(a) Target view. (PSNR) (b) Source view. 39.56 dB

(c) Reinhard et al. [13]. 23.29 dB (d) Kotera [9]. 39.61 dB

(e) Pitié et al. [10]. 39.80 dB (f) Ours. 43.62 dB

Figure 7: Example of color matching in stereo pairs. The colors of source view are matched to the target view by different
algorithms. Compare the cheek of the hippo. Images are property of Mammoth HD Inc.


