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Abstract
The availability of large-scale datasets has helped un-

leash the true potential of deep convolutional neural net-
works (CNNs). However, for the single-image denoising
problem, capturing a real dataset is an unacceptably ex-
pensive and cumbersome procedure. Consequently, im-
age denoising algorithms are mostly developed and eval-
uated on synthetic data that is usually generated with a
widespread assumption of additive white Gaussian noise
(AWGN). While the CNNs achieve impressive results on
these synthetic datasets, they do not perform well when ap-
plied on real camera images, as reported in recent bench-
mark datasets. This is mainly because the AWGN is not ad-
equate for modeling the real camera noise which is signal-
dependent and heavily transformed by the camera imaging
pipeline. In this paper, we present a framework that mod-
els camera imaging pipeline in forward and reverse direc-
tions. It allows us to produce any number of realistic im-
age pairs for denoising both in RAW and sRGB spaces. By
training a new image denoising network on realistic syn-
thetic data, we achieve the state-of-the-art performance on
real camera benchmark datasets. The parameters in our
models are ∼5 times lesser than the previous best method
for RAW denoising. Furthermore, we demonstrate that the
proposed framework generalizes beyond image denoising
problem e.g., for color matching in stereoscopic cinema.
The source code and pre-trained models are available at
https://github.com/swz30/CycleISP.

1. Introduction

High-level computer vision tasks, such as image classifi-
cation, object detection and segmentation have witnessed
significant progress due to deep CNNs [33]. The major
driving force behind the success of CNNs is the availabil-
ity of large-scale datasets [17, 38], containing hundreds of
thousands of annotated images. However, for low-level vi-
sion problems (image denoising, super-resolution, deblur-
ring, etc.), collecting even small datasets is extremely chal-
lenging and non-trivial. For instance, the typical procedure
to acquire noisy paired data is to take multiple noisy images

(a) Noisy Input (b) N3NET [45]
PSNR(RAW) / PSNR(sRGB) 38.24 dB / 32.42 dB

(c) UPI [7] (d) Ours
37.37 dB / 35.49 dB 40.44 dB / 36.16 dB

Figure 1: Denoising a real camera image from DND dataset
[44]. Our model is effective in removing real noise, espe-
cially the low-frequency chroma and defective pixel noise.

of the same scene and generate clean ground-truth image by
pixel-wise averaging. In practice, spatial pixels misalign-
ment, color and brightness mismatch is inevitable due to
changes in lighting conditions and camera/object motion.
Moreover, this expensive and cumbersome exercise of ac-
quiring image pairs needs to be repeated with different cam-
era sensors, as they exhibit different noise characteristics.

Consequently, single image denoising is mostly per-
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formed in synthetic settings: take a large set of clean sRGB
images and add synthetic noise to generate their noisy ver-
sions. On synthetic datasets, existing deep learning based
denoising models yield impressive results, but they exhibit
poor generalization to real camera data as compared to con-
ventional methods [8, 15]. This trend is also demonstrated
in recent benchmarks [1, 44]. Such behavior stems from
the fact that deep CNNs are trained on synthetic data that is
usually generated with the Additive White Gaussian Noise
(AWGN) assumption. Real camera noise is fundamentally
different from AWGN, thereby causing a major challenge
for deep CNNs [6, 22, 24].

In this paper, we propose a synthetic data generation
approach that can produce realistic noisy images both in
RAW and sRGB spaces. The main idea is to inject noise in
the RAW images obtained with our learned device-agnostic
transformation rather than in the sRGB images directly. The
key insight behind our framework is that the real noise
present in sRGB images is convoluted by the series of
steps performed in a regular image signal processing (ISP)
pipeline [6, 46]. Therefore, modeling real camera noise in
sRGB is an inherently difficult task as compared to RAW
sensor data [35]. As an example, noise at the RAW sensor
space is signal-dependent; after demosaicking, it becomes
spatio-chromatically correlated; and after passing through
the rest of the pipeline, its probability distribution not nec-
essarily remains Gaussian [52]. This implies that the cam-
era ISP heavily transforms the sensor noise, and therefore
more sophisticated models that take into account the influ-
ence of imaging pipeline are needed to synthesize realistic
noise than uniform AWGN model [1, 26, 44].

In order to exploit the abundance and diversity of sRGB
photos available on the Internet, the main challenge with the
proposed synthesis approach is how to transform them back
to RAW measurements. Brooks et al. [7] present a tech-
nique that inverts the camera ISP, step-by-step, and thereby
allows conversion from sRGB to RAW data. However, this
approach requires prior information about the target cam-
era device (e.g., color correction matrices and white bal-
ance gains), which makes it specific to a given device and
therefore lacks in generalizability. Furthermore, several op-
erations in a camera pipeline are proprietary and such black
boxes are very difficult to reverse engineer. To address these
challenges, in this paper we propose a CycleISP framework
that converts sRGB images to RAW data, and then back to
sRGB images, without requiring any knowledge of camera
parameters. This property allows us to synthesize any num-
ber of clean and realistic noisy image pairs in both RAW
and sRGB spaces. Our main contributions are:
• Learning a device-agnostic transformation, called Cy-

cleISP, that allows us to move back and forth between
sRGB and RAW image spaces.
• Real image noise synthesizer for generating

clean/noisy paired data in RAW and sRGB spaces.
• A deep CNN with dual attention mechanism that is ef-

fective in a variety of tasks: learning CycleISP, synthe-
sizing realistic noise, and image denoising.
• Algorithms to remove noise from RAW and sRGB im-

ages, setting new state-of-the-art on real noise bench-
marks of DND [44] and SIDD [1] (see Fig. 1). More-
over, our denoising network has much fewer parame-
ters (2.6M) than the previous best model (11.8M) [7].
• CycleISP framework generalizes beyond denoising,

we demonstrate this via an additional application i.e.,
color matching in stereoscopic cinema.

2. Related Work
The presence of noise in images is inevitable, irrespec-

tive of the acquisition method; now more than ever, when
majority of images come from smartphone cameras having
small sensor size but large resolution. Single-image denois-
ing is a vastly researched problem in the computer vision
and image processing community, with early works dat-
ing back to 1960’s [6]. Classic methods on denoising are
mainly based on the following two principles. (1) Modi-
fying transform coefficients using the DCT [61], wavelets
[19, 54], etc. (2) Averaging neighborhood values: in all di-
rections using Gaussian kernel, in all directions only if pix-
els have similar values [55, 57] and along contours [42, 50].

While these aforementioned methods provide satisfac-
tory results in terms of image fidelity metrics and visual
quality, the Non-local Means (NLM) algorithm of Buades et
al. [8] makes significant advances in denoising. The NLM
method exploits the redundancy, or self-similarity [20]
present in natural images. For many years the patch-based
methods yielded comparable results, thus prompting studies
[11, 12, 37] to investigate whether we reached the theoreti-
cal limits of denoising performance. Subsequently, Burger
et al. [9] train a simple Multi-Layer Perceptron (MLP) on
a large synthetic noise dataset. This method performs well
against previous sophisticated algorithms. Several recent
methods use deep CNNs [4, 7, 25, 28, 45, 64, 65, 2] and
demonstrate promising denoising performance.

Image denoising can be applied to RAW or sRGB data.
However, capturing diverse large-scale real noise data is
a prohibitively expensive and tedious procedure, conse-
quently leaving us to study denoising in synthetic settings.
The most commonly used noise model for developing and
evaluating image denoising is AWGN. As such, algorithms
that are designed for AWGN cannot effectively remove
noise from real images, as reported in recent benchmarks
[1, 44]. A more accurate model for real RAW sensor
noise contains both the signal-dependent noise component
(the shot noise), and the signal-independent additive Gaus-
sian component (the read noise) [22, 23, 24]. The camera
ISP transforms RAW sensor noise into a complicated form



Figure 2: Our CycleISP models the camera imaging pipeline in both directions. It comprises two main branches: RGB2RAW
and RAW2RGB. The RGB2RAW branch converts sRGB images to RAW measurements, whereas the RAW2RGB branch
transforms RAW data to sRGB images. The auxiliary color correction branch provides explicit color attention to RAW2RGB
network. The noise injection module is switched OFF while training the CycleISP (Section 3), and switched ON when
synthesizing noise data (Section 4).

(spatio-chromatically correlated and not necessarily Gaus-
sian). Therefore, estimating a noise model for denoising in
sRGB space requires careful consideration of the influence
of ISP. In this paper, we present a framework that is capable
of synthesizing realistic noise data for training CNNs to ef-
fectively remove noise from RAW as well as sRGB images.

3. CycleISP
To synthesize realistic noise datasets, we use a two-stage

scheme in this work. First, we develop a framework that
models the camera ISP both in forward and reverse direc-
tions, hence the name CycleISP. Second, using CycleISP,
we synthesize realistic noise datasets for the tasks of RAW
denoising and sRGB image denoising. In this section, we
only describe our CycleISP framework that models the cam-
era ISP as a deep CNN system. Fig. 2 shows the modules of
the CycleISP model: (a) RGB2RAW network branch, and
(b) RAW2RGB network branch. In addition, we introduce
an auxiliary color correction network branch that provides
explicit color attention to the RAW2RGB network in order
to correctly recover the original sRGB image.

The noise injection module in Fig. 2 is only required
when synthesizing noisy data (Section 4), and thus we keep
it in the ‘OFF’ state while learning CycleISP. The training
process of CycleISP is divided in two steps: the RGB2RAW
and RAW2RGB networks are first independently trained,
and then joint fine-tuning is performed. Next, we present
details of different branches of CycleISP. Note that we use
RGB instead of sRGB to avoid notation clutter.

3.1. RGB2RAW Network Branch

Digital cameras apply a series of operations on RAW
sensor data in order to generate the monitor-ready sRGB
images [46]. Our RGB2RAW network branch aims to in-
vert the effect of camera ISP. In contrast to the unprocessing

technique of [7], the RGB2RAW branch does not require
any camera parameters.

Given an input RGB image Irgb ∈ RH×W×3, the
RGB2RAW network first extracts low-level features T0 ∈
RH×W×C using a convolutional layer M0 as: T0 =
M0(Irgb). Next, we pass the low-level feature maps T0
throughN recursive residual groups (RRGs) to extract deep
features Td ∈ RH×W×C as:

Td = RRGN (...(RRG1(T0))) , (1)

where each RRG contains multiple dual attention blocks, as
we shall see in Section 3.3.

We then apply the final convolution operation M1 to
the features Td and obtain the demosaicked image Îdem ∈
RH×W×3. We deliberately set the number of output chan-
nels ofM1 layer to three rather than one in order to preserve
as much structural information of the original image as pos-
sible. Moreover, we empirically found that it helps the net-
work to learn the mapping from sRGB to RAW faster and
more accurately. At this point, the network is able to in-
vert the effects of tone mapping, gamma correction, color
correction, white balance, and other transformations, and
provide us with the image Îdem whose values are linearly
related to the scene radiance. Finally, in order to generate
the mosaicked RAW output Îraw ∈ RH×W×1, the Bayer
sampling function fBayer is applied to Îdem that omits two
color channels per pixel according to the Bayer pattern:

Îraw = fbayer(M1(Td)). (2)

The RGB2RAW network is optimized using the L1 loss
in linear and log domains as:

Ls→r(Îraw, Iraw) =
∥∥∥Îraw − Iraw

∥∥∥
1

+
∥∥∥log(max(Îraw, ε))− log(max(Iraw, ε))

∥∥∥
1
,

(3)



where ε is a small constant for numerical stability, and Iraw
is the ground-truth RAW image. Similar to [21], the log loss
term is added to enforce approximately equal treatment for
all the image values; otherwise the network dedicates more
attention to recovering the highlight regions.

3.2. RAW2RGB Network Branch

While the ultimate goal of RAW2RGB network is to gen-
erate synthetic realistic noise data for the sRGB image de-
noising problem, in this section we first describe how we
can map clean RAW images to clean sRGB images (leav-
ing the noise injection module ‘OFF’ in Fig. 2).

Let Iraw and Îrgb be the input and output of the
RAW2RGB network. First, in order to restore translation
invariance and reduce computational cost, we pack the 2×2
blocks of Iraw into four channels (RGGB) and thus re-
duce the image resolution by half [7, 13, 25]. Since the
input RAW data may come from different cameras having
different Bayer patterns, we ensure the channel order of
the packed image to be RGGB by applying the Bayer pat-
tern unification technique [39]. Next, a convolutional layer
M2 followed by K − 1 RRG modules encode the packed
RAW image Ipack ∈ RH

2 ×
W
2 ×4 into a deep feature tensor

Td′ ∈ RH
2 ×

W
2 ×C as:

Td′ = RRGK−1(...(RRG1(M2(Pack(Iraw))))). (4)

Note that Iraw is the original camera RAW image (not the
output of RGB2RAW network) because our objective here
is to first learn RAW to sRGB mapping, independently.

Color attention unit. To train the CycleISP, we use the
MIT-Adobe FiveK dataset [10] that contains images from
several different cameras having diverse and complex ISP
systems. It is extremely difficult for a CNN to accurately
learn a RAW to sRGB mapping function for all different
types of cameras (as one RAW image can potentially map to
many sRGB images). One solution is to train one network
for each camera ISP [13, 51, 62]. However, such solutions
are not scalable and the performance may not generalize to
other cameras. To address this issue, we propose to include
a color attention unit in the RAW2RGB network that pro-
vides explicit color attention via a color correction branch.

The color correction branch is a CNN that takes as input
an sRGB image Irgb and generates a color-encoded deep
feature tensor Tcolor ∈ RH

2 ×
W
2 ×C . In the color correction

branch, we first apply Gaussian blur to Irgb, followed by a
convolutional layerM3, two RRGs and a gating mechanism
with sigmoid activation σ:

Tcolor = σ(M4(RRG2(RRG1(M3(K ∗ Irgb))))), (5)

where ∗ denotes convolution, and K is the Gaussian kernel
with standard deviation empirically set to 12. This strong
blurring operation ensures that only the color information

Figure 3: Recursive residual group (RRG) contains multi-
ple dual attention blocks (DAB). Each DAB contains spatial
attention and channel attention modules.

flows through this branch, whereas the structural content
and fine texture comes from the main RAW2RGB network.
Using weaker blurring will undermine the effectiveness of
the feature tensor Td′ of Eq. (4). The overall color attention
unit process becomes:

Tatten = Td′ + (Td′ ⊗ Tcolor), (6)

where, ⊗ is Hadamard product. To obtain the final sRGB
image Îrgb, the output features Tatten from the color atten-
tion unit are passed through a RRG module, a convolutional
layer M4 and an upscaling layer Mup [53], respectively:

Îrgb =Mup(M5(RRGK(Tatten))). (7)

For optimizing RAW2RGB network, we use the L1 loss:

Lr→s(Îrgb, Irgb) =
∥∥∥Îrgb − Irgb

∥∥∥
1
. (8)

3.3. RRG: Recursive Residual Group

Motivated by the advances of recent low-level vision
methods [48, 63, 64, 66] based on the residual learning
framework [29], we propose the RRG module, as shown in
Fig. 3. The RRG contains P dual attention blocks (DAB).
The goal of each DAB is to suppress the less useful features
and only allow the propagation of more informative ones.
The DAB performs this feature recalibration by using two
attention mechanisms: (1) channel attention (CA) [30], and
(2) spatial attention (SA) [58]. The overall process is:

TDAB = Tin +Mc([CA(U),SA(U)]), (9)

where U ∈ RH×W×C denotes features maps that are ob-
tained by applying two convolutions on input tensor Tin ∈
RH×W×C at the beginning of the DAB, and Mc is the last
convolutional layer with filter size 1× 1.

Channel attention. This branch is designed to exploit the
inter-channel dependencies of convolutional features. It
first performs a squeeze operation in order to encode the



Figure 4: Fine-tuning CycleISP to synthesize realistic
sRGB noise data.

spatially global context, which is then followed by an exci-
tation operation to fully capture channel-wise relationships
[30]. The squeeze operation is realized by applying global
average pooling (GAP) on feature maps U , thus yielding
a descriptor z ∈ R1×1×C . The excitation operator recali-
brates the descriptor z using two convolutional layers fol-
lowed by the sigmoid activation and results in activations
s ∈ R1×1×C . Finally, the output of CA branch is obtained
by rescaling U with the activations s.

Spatial attention. This branch exploits the inter-spatial re-
lationships of features and computes a spatial attention map
that is then used to rescale the incoming features U . To
generate the spatial attention map, we first independently
apply global average pooling and max pooling operations
on features U along the channel dimensions and concate-
nate the output maps to form a spatial feature descriptor
d ∈ RH×W×2. This is followed by a convolution and sig-
moid activation to obtain the spatial attention map.

3.4. Joint Fine-tuning of CycleISP

Since the RGB2RAW and RAW2RGB networks are
initially trained independently, they may not provide the
optimal-quality images due to the disconnection between
them. Therefore, we perform joint fine-tuning in which the
output of RGB2RAW becomes the input of RAW2RGB.
The loss function for the joint optimization is:

Ljoint = βLs→r(Îraw, Iraw) + (1−β)Lr→s(Îrgb, Irgb),

where β is a positive constant. Note that the RAW2RGB
network receives gradients from the RAW2RGB sub-loss
(only the second term). Whereas, the RGB2RAW network
receives gradients from both sub-losses, thereby effectively
contributing to the reconstruction of the final sRGB image.

4. Synthetic Realistic Noise Data Generation
Capturing perfectly-aligned real noise data pairs is ex-

tremely difficult. Consequently, image denoising is mostly
studied in artificial settings where Gaussian noise is added
to the clean images. While the state-of-the-art image de-
noising methods [9, 64] have shown promising performance
on these synthetic datasets, they do not perform well when
applied on real camera images [1, 44]. This is because the
synthetic noise data differs fundamentally from real camera
data. In this section, we describe the process of synthesiz-
ing realistic noise image pairs for denoising both in RAW

Figure 5: Proposed denoising network. It has the same net-
work structure for denoising both RAW images and sRGB
images, except in the handling of input and output.

and sRGB space using the proposed CycleISP method.

Data for RAW denoising. The RGB2RAW network branch
of the CycleISP method takes as input a clean sRGB image
and converts it to a clean RAW image (top branch, Fig. 2).
The noise injection module, which we kept off while train-
ing CycleISP, is now turned to the ‘ON’ state. The noise
injection module adds shot and read noise of different lev-
els to the output of RGB2RAW network. We use the same
procedure for sampling shot/read noise factors as in [7]. As
such, we can generate clean and its corresponding noisy im-
age pairs {RAWclean, RAWnoisy} from any sRGB image.

Data for sRGB denoising. Given a synthetic RAWnoisy

image as input, the RAW2RGB network maps it to a noisy
sRGB image (bottom branch, Fig. 2); hence we are able
to generate an image pair {sRGBclean,sRGBnoisy} for the
sRGB denoising problem. While these synthetic image
pairs are already adequate for training the denoising net-
works, we can further improve their quality with the fol-
lowing procedure. We fine-tune the CycleISP model (Sec-
tion 3.4) using the SIDD dataset [1] that is captured with
real cameras. For each static scene, SIDD contains clean
and noisy image pairs in both RAW and sRGB spaces. The
fine-tuning process is shown in Fig. 4. Notice that the noise
injection module which adds random noise is replaced by
(only for fine-tuning) per-pixel noise residue that is ob-
tained by subtracting the real RAWclean image from the real
RAWnoisy image. Once the fine-tuning procedure is com-
plete, we can synthesize realistic noisy images by feeding
clean sRGB images to the CycleISP model.

5. Denoising Architecture

As illustrated in Fig. 5, we propose an image denois-
ing network by employing multiple RRGs. Our aim is to
apply the proposed network in two different settings: (1)
denoising RAW images, and (2) denoising sRGB data. We
use the same network structure under both settings, with
the only difference being in the handling of input and out-
put. For denoising in the sRGB space, the input and out-
put of the network are the 3-channel sRGB images. For
denoising the RAW images, our network takes as input a 4-
channel noisy packed image concatenated with a 4-channel
noise level map, and provides us with a 4-channel packed
denoised output. The noise level map provides an estimate
of the standard deviation of noise present in the input image,
based on its shot and read noise parameters [7].



6. Experiments
6.1. Real Image Datasets

DND [44]. This dataset consists of 50 pairs of noisy and
(nearly) noise-free images captured with four consumer
cameras. Since the images are of very high-resolution, the
providers extract 20 crops of size 512× 512 from each im-
age, thus yielding a total of 1000 patches. The complete
dataset is used for testing because the ground-truth noise-
free images are not publicly available. The data is provided
for two evaluation tracks: RAW space and sRGB space.
Quantitative evaluation in terms of PSNR and SSIM can
only be performed through an online server [16].

SIDD [1]. Due to the small sensor size and high-resolution,
smartphone images are much more noisy than those of
DSLRs. This dataset is collected using five smartphone
cameras. There are 320 image pairs available for training
and 1280 image pairs for validation. This dataset also pro-
vides images both in RAW format and in sRGB space.

6.2. Implementation Details

All the models presented in this paper are trained with
Adam optimizer (β1 = 0.9, and β2 = 0.999) and image
crops of 128 × 128. Using the Bayer unification and aug-
mentation technique [39], we randomly perform horizontal
and vertical flips. We set a filter size of 3× 3 for all convo-
lutional layers of the DAB except the last for which we use
1× 1.

Initial training of CycleISP. To train the CycleISP model,
we use the MIT-Adobe FiveK dataset [10], which contains
5000 RAW images. We process these RAW images using
the LibRaw library and generate sRGB images. From this
dataset, 4850 images are used for training and 150 for val-
idation. We use 3 RRGs and 5 DABs for both RGB2RAW
and RAW2RGB networks, and 2 RRGs and 3 DABs for the
color correction network. The RGB2RAW and RAW2RGB
branches of CycleISP are independently trained for 1200
epochs with a batch size of 4. The initial learning rate is
10−4, which is decreased to 10−5 after 800 epochs.

Fine-tuning CycleISP. This process is performed twice:
first with the procedure presented in Section 3.4, and then
with the method of Section 4. In the former case, the output
of the CycleISP model is noise-free, and in the latter case,
the output is noisy. For each fine-tuning stage, we use 600
epochs, batch size of 1 and learning rate of 10−5.

Training denoising networks. We train four networks to
perform denoising on: (1) DND RAW data, (2) DND sRGB
images, (3) SIDD RAW data, and (4) SIDD sRGB images.
For all four networks, we use 4 RRGs and 8 DABs, 65
epochs, batch size of 16, and initial learning rate of 10−4

which is decreased by a factor of 10 after every 25 epochs.
We take 1 million images from the MIR flickr extended

Table 1: RAW denoising results on the DND benchmark
dataset [44]. * denotes that these methods use variance sta-
bilizing transform (VST) [40] to provide their best results.

RAW sRGB
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
TNRD* [14] 45.70 0.96 36.09 0.888
MLP* [9] 45.71 0.963 36.72 0.912
FoE [49] 45.78 0.967 35.99 0.904
EPLL* [67] 46.86 0.973 37.46 0.925
KSVD* [3] 46.87 0.972 37.63 0.929
WNNM* [27] 47.05 0.972 37.69 0.926
NCSR* [18] 47.07 0.969 37.79 0.923
BM3D* [15] 47.15 0.974 37.86 0.930
DnCNN [64] 47.37 0.976 38.08 0.936
N3Net [45] 47.56 0.977 38.32 0.938
UPI (Raw) [7] 48.89 0.982 40.17 0.962

Ours 49.13 0.983 40.50 0.966

Table 2: RAW denoising results on the SIDD dataset [1].

RAW sRGB
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
EPLL [67] 40.73 0.935 25.19 0.842
GLIDE [56] 41.87 0.949 25.98 0.816
TNRD [14] 42.77 0.945 26.99 0.744
FoE [49] 43.13 0.969 27.18 0.812
MLP [9] 43.17 0.965 27.52 0.788
KSVD [3] 43.26 0.969 27.41 0.832
DnCNN [64] 43.30 0.965 28.24 0.829
NLM [8] 44.06 0.971 29.39 0.846
WNNM [27] 44.85 0.975 29.54 0.888
BM3D [15] 45.52 0.980 30.95 0.863

Ours 52.41 0.993 39.47 0.918

dataset [31] and split them into a ratio of 90:5:5 for training,
validation and testing. All the images are preprocessed with
the Gaussian kernel (σ = 1) to reduce the effect of noise,
and other artifacts. Next, we synthesize clean/noisy paired
training data (both for RAW and sRGB denoising) using the
procedure described in Section 4.

6.3. Results for RAW Denoising

In this section, we evaluate the denoising results of
the proposed CycleISP model with existing state-of-the-
art methods on the RAW data from DND [44] and
SIDD [1] benchmarks. Table 1 shows the quantitative re-
sults (PSNR/SSIM) of all competing methods on the DND
dataset obtained from the website of the evaluation server
[16]. Note that there are two super columns in the table list-
ing the values of image quality metrics. The numbers in the
sRGB super column are provided by the server after pass-
ing the denoised RAW images through the camera imag-
ing pipeline [32] using image metadata. Our model consis-
tently performs better against the learning-based as well as
conventional denoising algorithms. Furthermore, the pro-
posed model has ∼5× lesser parameters than previous best
method [7]. The trend is similar for the SIDD dataset, as
shown in Table 2. Our algorithm achieves 6.89 dB improve-
ment in PSNR over the BM3D algorithm[15].

A visual comparison of our result against the state-of-



Table 3: Denoising sRGB images of the DND benchmark dataset [44].

Method EPLL TNRD NCSR MLP BM3D FoE WNNM KSVD MCWNNM FFDNet+ TWSC CBDNet RIDNet Ours
[67] [14] [18] [9] [15] [49] [27] [3] [60] [65] [59] [28] [4]

PSNR ↑ 33.51 33.65 34.05 34.23 34.51 34.62 34.67 36.49 37.38 37.61 37.94 38.06 39.23 39.56
SSIM ↑ 0.824 0.831 0.835 0.833 0.851 0.885 0.865 0.898 0.929 0.942 0.940 0.942 0.953 0.956

Table 4: Denoising sRGB images of the SIDD benchmark dataset [1].

Method DnCNN MLP GLIDE TNRD FoE BM3D WNNM NLM KSVD EPLL CBDNet RIDNet Ours
[64] [9] [56] [14] [49] [15] [27] [8] [3] [67] [28] [4]

PSNR ↑ 23.66 24.71 24.71 24.73 25.58 25.65 25.78 26.76 26.88 27.11 30.78 38.71 39.52
SSIM ↑ 0.583 0.641 0.774 0.643 0.792 0.685 0.809 0.699 0.842 0.870 0.754 0.914 0.957

26.90 dB 30.91 dB 32.47 dB 32.50 dB 32.74 dB
Noisy BM3D [15] NC [36] TWSC [59] MCWNNM [60]

26.90 dB 33.05 dB 33.29 dB 33.62 dB 34.09 dB 34.32 dB
Noisy Image FDDNet [65] DnCNN [64] CBDNet [28] RIDNet [4] Ours

Figure 6: Denoising sRGB image from DND [44]. Our method preserves better structural content than other algorithms.

18.25 dB 19.70 dB 20.76 dB
Reference Noisy FFDNet [65] DnCNN [64]

25.75 dB 28.84 dB 35.57 dB 36.75 dB
BM3D [15] CBDNet [28] RIDNet [4] Ours

Figure 7: Denoising results of different methods on a chal-
lenging sRGB image from the SIDD dataset [1].

the-art algorithms is presented in Fig. 1. Our model is
very effective in removing real noise, especially the low-
frequency chroma noise and defective pixel noise.

6.4. Results for sRGB Denoising

While it is recommended to apply denoising on RAW
data (where noise is uncorrelated and less complex) [26],
denoising is commonly studied in the sRGB domain. We

compare the denoising results of different methods on
sRGB images from the DND and SIDD datasets. Table 3
and 4 show the scores of image quality metrics. Overall,
the proposed model performs favorably against the state-of-
the-art. Compared to the recent best algorithm RIDNet [4],
our approach demonstrates the performance gain of 0.33 dB
and 0.81 dB on DND and SIDD datasets, respectively.

Fig. 6 and 7 illustrate the sRGB denoising results on
DND and SIDD, respectively. To remove noise, most of
the evaluated algorithms either produce over-smooth im-
ages (and sacrifice image details) or generate images with
splotchy texture and chroma artifacts. In contrast, our
method generates clean and artifact-free results, while faith-
fully preserving image details.

6.5. Generalization Test

To compare the generalization capability of the denois-
ing model trained on the synthetic data generated by our
method and that of [7], we perform the following experi-
ments. We take the (publicly available) denoising model of
[7] trained for DND, and directly evaluate it on the RAW
images from the SIDD dataset. We repeat the same pro-
cedure for our denoising model as well. For a fair com-
parison, we use the same network architecture (U-Net) and
noise model as of [7]. The only difference is data conver-



Table 5: Generalization Test. U-Net model is trained only
for DND [44] with our technique and with the UPI [7]
method, and directly evaluated on the SIDD dataset [1].

DND [44] SIDD [1]
Method PSNR SSIM PSNR SSIM

UPI [7] 48.89 0.9824 49.17 0.9741
Ours 49.00 0.9827 50.14 0.9758

Table 6: Ablation study: RAW2RGB branch.
Short skip connections X X X X X
Color correction branch X X X X X
Channel Attention (CA) X X X X
Spatial attention (SA) X X X X

PSNR (in dB) 23.22 42.96 33.58 44.67 45.08 45.41

Table 7: Layout of SA and CA in DAB.
Layout CA + SA SA + CA CA & SA in parallel

PSNR (in dB) 45.17 45.16 45.41

sion from sRGB to RAW. The results in Table 5 show that
the denoising network trained with our method not only per-
forms well on the DND dataset but also shows promising
generalization to the SIDD set (a gain of ∼ 1 dB over [7]).

6.6. Ablations

We study the impact of individual contributions by pro-
gressively integrating them to our model. To this end, we
use the RAW2RGB network that maps clean RAW image
to clean sRGB image. Table 6 shows that the skip connec-
tions cause the largest performance drop, followed by the
color correction branch. Furthermore, it is evident that the
presence of both CA and SA is important, as well as their
configuration (see Table 7), for the overall performance.

6.7. Color Matching For Stereoscopic Cinema

In professional 3D cinema, stereo pairs for each frame
are acquired using a stereo camera setup, with two cameras
mounted on a rig either side-by-side or (more commonly)
in a beam splitter formation [5]. During movie produc-
tion, meticulous efforts are required to ensure that the twin
cameras perform in exactly the same manner. However, of-
tentimes visible color discrepancies between the two views
are inevitable because of the imperfect camera adjustments
and impossibility of manufacturing identical lens systems.
In movie post-production, color mismatch is corrected by
a skilled technician, which is an expensive and highly in-
volved procedure [41].

With the proposed CycleISP model, we can perform the
color matching task, as shown in Fig. 8. Given a stereo pair,
we first choose one view as the target and apply morphing
to fully register it with the source view. Next, we pass the
source RGB image through RGB2RAW model and obtain
the source RAW image. Finally, we map back the source
RAW image to the sRGB space using the RAW2RGB net-

Figure 8: Scheme for color matching 3D pairs.

(a) Target view. (PSNR) (b) Source view. 32.17 dB

(c) Reinhard et al. [47]. 18.38 dB (d) Kotera [34]. 32.80 dB

(e) Pitié et al. [43]. 33.38 dB (f) Ours. 36.60 dB

Figure 9: Example of color correction for 3D cinema. Com-
pare the colors of the ground and side of the car in zoomed-
in crops. Images are property of Mammoth HD Inc.

work, but with the color correction branch providing the
color information from the ‘target’ RGB image (rather than
the source RGB). Fig. 9 compares our method with three
other color matching techniques [34, 43, 47]. The proposed
method generates results that are perceptually more faithful
to the target views than other competing approaches.

7. Conclusion

In this work, we propose a data-driven CycleISP frame-
work that is capable of converting sRGB images to RAW
data and back to sRGB images. The CycleISP model al-
lows us to synthesize realistic clean/noisy paired training
data both in RAW and sRGB spaces. By training a novel
network for the tasks of denoising the RAW and sRGB im-
ages, we achieve state-of-the-art performance on real noise
benchmark datasets (DND [44] and SIDD [1]). Further-
more, we demonstrate that the CycleISP model can be ap-
plied to the color matching problem in stereoscopic cinema.
Our future work includes exploring and extending the Cy-
cleISP model for other low-level vision problems such as
super-resolution and deblurring.
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