# Separating Objects and Clutter in Indoor Scenes

Salman H. Khan<sup>1</sup>, Xuming He<sup>2</sup>, Mohammed Bennamoun<sup>1</sup>, Ferdous Sohel<sup>1</sup>, Roberto Togneri<sup>3</sup> <sup>1</sup> School of CSSE, <sup>3</sup> School of EECE, University of Western Australia, <sup>2</sup> NICTA, Australian National University

# Introduction **Problem Definition:** Input Output RGB-D Image Object cuboids + Clutter

#### Highlights:

• We perform 'fine-grained structure categorization' by predicting all the major objects and structures and simultaneously labeling the cluttered regions.

• The proposed CRF model incorporates a rich set of local appearance, geometric features and interactions between the scene elements.

• We take a structural learning approach with a loss of 3D localisation to estimate the model parameters from a large annotated RGBD dataset, and a mixed integer linear programming formulation for inference.

## Cuboid Detection Results

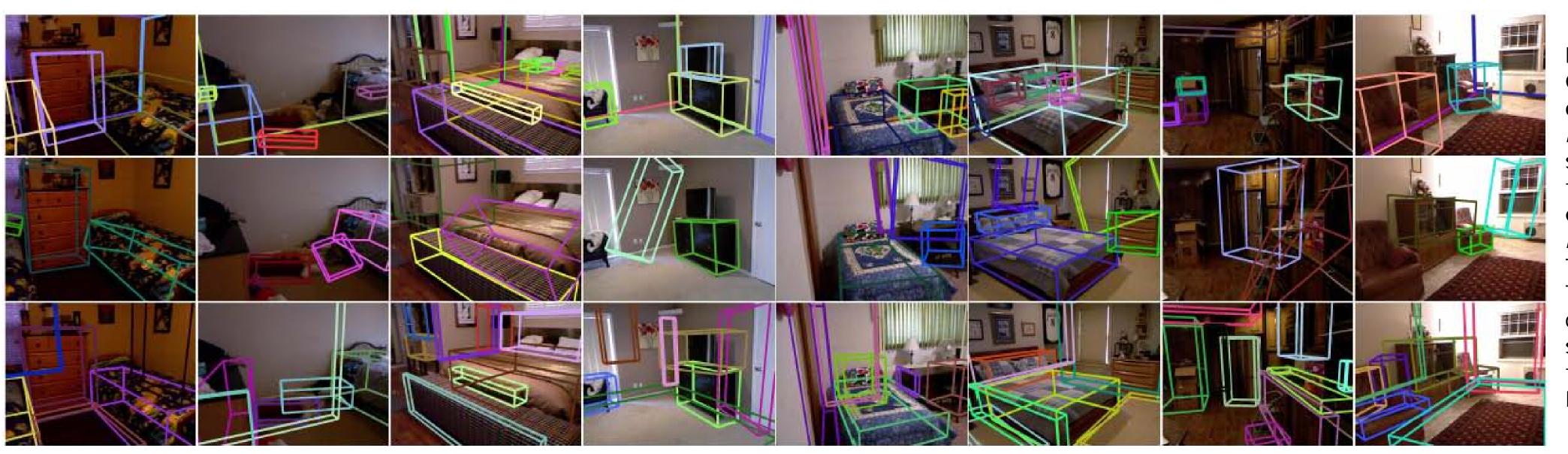
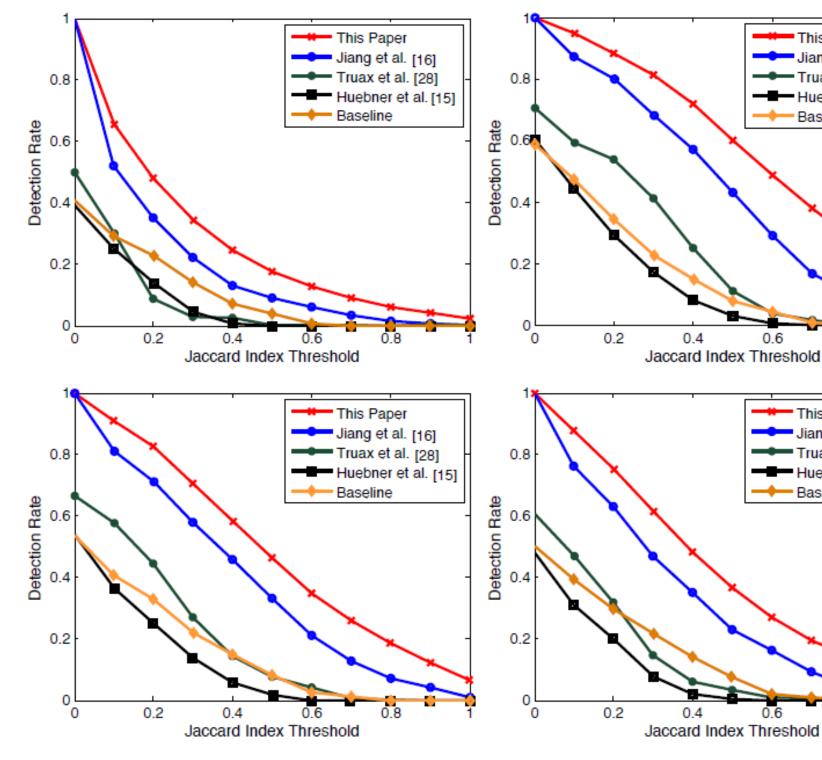


Figure: Jaccard Index comparisons for all annotated cuboids (top left), for the most salient cuboid (*top right*) for top two salient cuboids (bottom *left*) and top three salient cuboids (bottom right).



#### Our Approach

• The goal is to describe an RGBD image with an optimal set of cuboids and pixel-level labeling of cluttered regions.

• We represent an indoor scene as an overlay of the cluttered regions (modeled as local surfaces) and the non-cluttered regions (modeled using 3D cuboids).

method for initial cuboid hypothesis • Our generation is based on a bottom-up clustering and fitting procedure, which generates both 'object' cuboids' and 'scene bounding cuboids'.

• We build a CRF model on the superpixel clutter variables (*m*) and the object variables (*c*) to describe the properties of clutter, objects and their relationship in the scene.

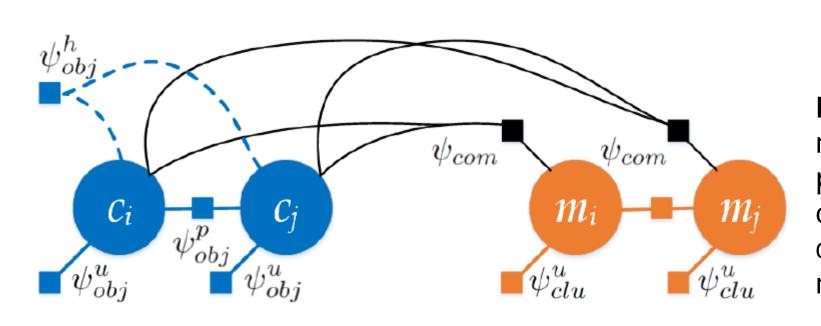
 $E(\mathbf{m}, \mathbf{c} | \mathcal{I}) = E_{obj}(\mathbf{c}) + E_{sp}(\mathbf{m}) + E_{com}(\mathbf{m}, \mathbf{c})$ 

• The first term is defined as a combination of unary and pair-wise terms on cuboids:

$$E_{obj}(\mathbf{c}) = \sum_{k=1}^{K} \left[ \psi_{obj}^{u}(c_k) + \psi_{obj}^{h}(c_k) \right] + \sum_{i < j} \psi_{obj}^{p}(c_i, c_j)$$

Cuboid feature set include:

- Volumetric occupancy feature, color consistency feature, normal consistency feature, tightness feature, support feature, geometric plausibility, cuboid size feature, cuboid MDL potential.



- View obstruction potential, cuboid intersection potential.

functions:

$$E_{sp}(\mathbf{m}) = \sum_{j=1}^{J} \mathbf{y}$$

- The unary potential is based on the rich kernel descriptors (Bo et al., 2011). - The pairwise potential is a contrast based Potts model.

• The third term is the compatibility constraint which enforces the consistency of the cuboid activations and the superpixel labeling:

- It consists of two terms:
- superpixel membership potential

Figure:

Comparison of our results (3rd *row*) with the state of the art technique [Jiang] et al., 2013] (2nd row) and Ground Truth (1st row). The detected cuboids are shown in color on top of the original RGB image.

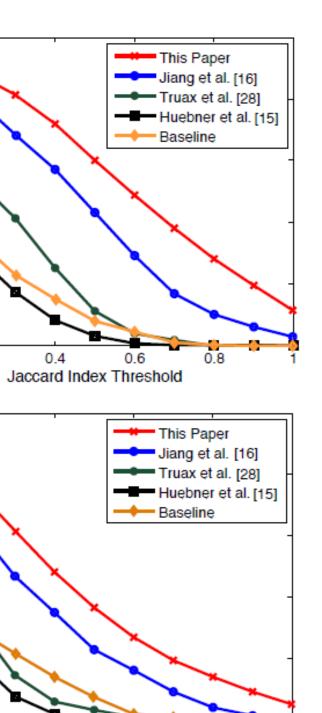


Figure: An ablation study on the model potentials/feature s for the cuboid detection task at the 40% JI threshold.

Method Unary cuboid cost of Jiang [16] Our unary cuboid cost only Our unary + pairwise cuboid cost only Our full model



Figure: Examples of detection errors.

Figure: Graph structure representation for the potentials defined on the object cuboids and the cluttered/non-cluttered regions.

•Similarly at the superpixel level, the second term consists of two potential

 $\psi_{sp}^u(m_j) + \sum \psi_{sp}^p(m_i, m_j)$  $(i,j) \in N_s$ 

 $E_{com}(\mathbf{m}, \mathbf{c}) = \sum_{j=1} \psi_{com}(m_j, \mathbf{c})$ 

- superpixel cuboid occlusion potential

# Inference

• We minimize the CRF energy to get optimal labeling:

• We adopt the relaxation method in [Geiger'11, Jiang'13] and transform the minimization into a Mixed Integer Linear Program (MILP) with linear constraints.

• The MILP formulation can be solved much faster compared to the original ILP, using the branch and bound method

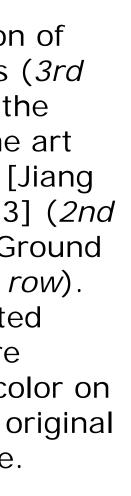
- On average, 81948% variables are involved in each inference and the final MILP gap is zero for 98:5% of the cases on the whole dataset.

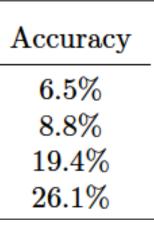
## Parameter Learning

• For parameter learning, we apply the structural SVM framework with margin re-scaling and 3D localization loss given by:

 $\Delta(\mathbf{t}^{(n)},\mathbf{t}) = \sum_{i} \left( 1 - \frac{|o_i^{(n)} \cap o_i|}{|o_i^{(n)} \cup o_i|} \right)$ 

• The formulation uses the cutting plane algorithm [Joachims'07] to search the optimal parameter setting.





### Segmentation Results

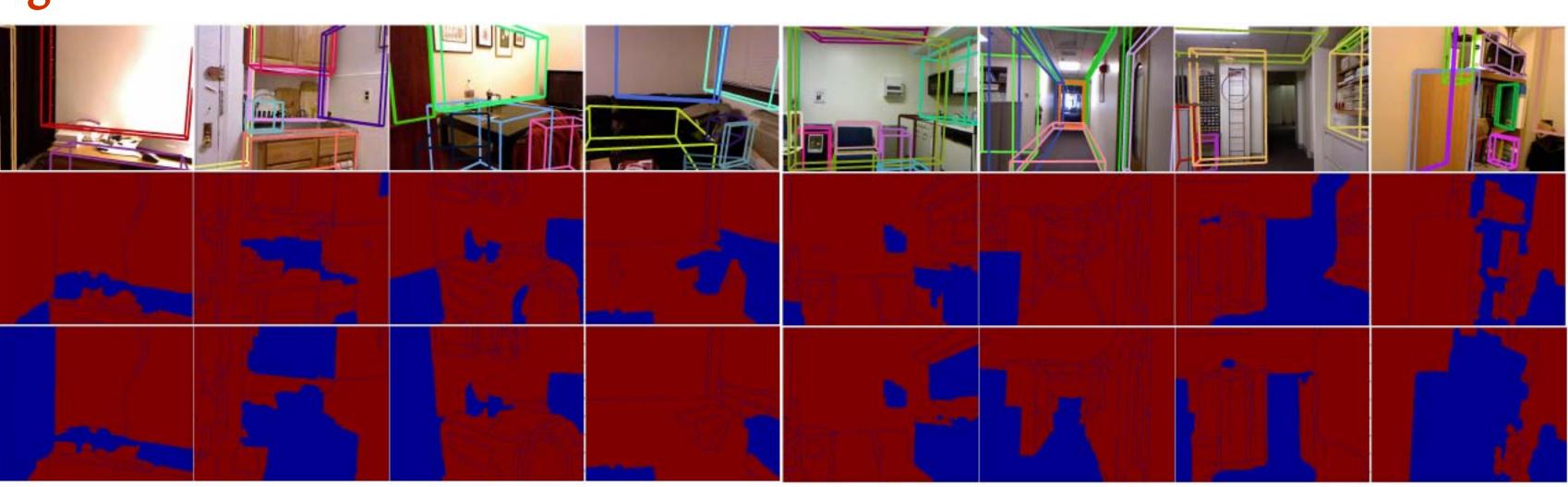
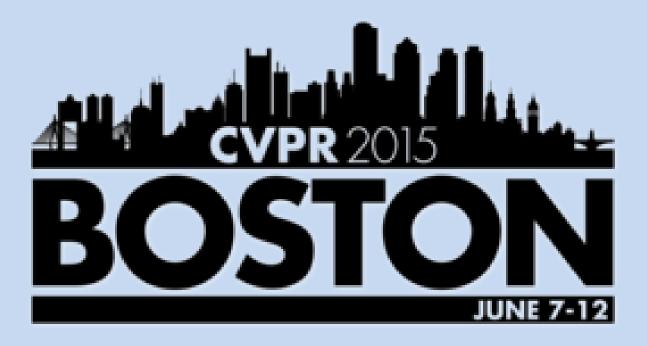


Figure: Our method is able to accurately detect cuboids in the case of cluttered indoor scenes (1st row). The 2nd and 3rd rows show our clutter labelling and the ground-truth labelling on superpixels, respectively. In the bottom two rows, red color represents non-clutter while blue color represents clutter.

| Method                                                                                                    | Precision                                                                                     | Recall                                                       | F-Score                                                                                         |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Superpixel unary only<br>Unary + pairwise<br>Full model (all classes)<br>Full model (only object classes) | $\begin{array}{c} 0.43 \pm 13\% \\ 0.46 \pm 12\% \\ 0.65 \pm 9\% \\ 0.75 \pm 6\% \end{array}$ | $\begin{array}{c} 0.48 \pm 10\% \\ 0.68 \pm 8\% \end{array}$ | $\begin{array}{c} 0.44 \pm 16\% \\ 0.47 \pm 16\% \\ 0.66 \pm 12\% \\ 0.73 \pm 10\% \end{array}$ |

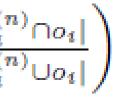
**Table:** Evaluation on Clutter/Non-Clutter
 Segmentation Task. Precision signifies the accuracy of clutter classification.



| ${m^*,$ | <b>c</b> *} = | $= \operatorname{argmin}$ | $E(\mathbf{m},$ | $\mathbf{c} \mathcal{I}).$ |
|---------|---------------|---------------------------|-----------------|----------------------------|
|         |               | m.c                       |                 |                            |

|      | $\min_{\mathbf{m},\mathbf{c},\mathbf{x},\mathbf{y},\mathbf{w},\mathbf{z}} E(\mathbf{m},\mathbf{c},\mathbf{x},\mathbf{y},\mathbf{w},\mathbf{z} \mathcal{I})$ |                       |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| s.t. | linear inequality constraints                                                                                                                               | s in $\mathcal{LC}$ , |  |
|      | $m_j, c_k \in \{0, 1\},\$                                                                                                                                   | $\forall j,k$         |  |
|      | $w_{i,j}, x_{i,j}, y_{i,j}, z_{j,k} \ge 0,$                                                                                                                 | $\forall i, j, k$     |  |

|                                                                                            |  | Small gap                                              |                                                        |                                                        | LP relax.                                                |  |
|--------------------------------------------------------------------------------------------|--|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--|
| Гіте (sec)<br>Det. Rate                                                                    |  | $\begin{array}{c} 1.84 \pm 31\% \\ 26.8\% \end{array}$ | $\begin{array}{c} 1.31 \pm 24\% \\ 26.1\% \end{array}$ | $\begin{array}{c} 0.45 \pm 13\% \\ 24.4\% \end{array}$ | $\begin{array}{c} 0.001 \pm 0.4\% \\ 19.9\% \end{array}$ |  |
| <b>Table:</b> Inference running time comparisons         for variants of MILP formulation. |  |                                                        |                                                        |                                                        |                                                          |  |



| Eval. Criterion                                                              | CPMC [6]        |               | This Paper      |                 |
|------------------------------------------------------------------------------|-----------------|---------------|-----------------|-----------------|
|                                                                              | Pre.            | Rec.          | Pre.            | Rec.            |
| Most salient obj.<br>Top 2 salient obj.<br>Top 3 salient obj.<br>All objects | $0.83 \pm 11\%$ | $0.79 \pm 12$ | $0.85 \pm 15\%$ | $0.82 \pm 15\%$ |
| Top 2 salient obj.                                                           | $0.77 \pm 12\%$ | $0.73 \pm 14$ | $0.81 \pm 16\%$ | $0.79 \pm 16\%$ |
| Top 3 salient obj.                                                           | $0.69 \pm 15\%$ | $0.66 \pm 17$ | $0.79\pm21\%$   | $0.76\pm19\%$   |
| All objects                                                                  | $0.54 \pm 17\%$ | $0.51\pm20$   | $0.73\pm23\%$   | $0.69 \pm 21\%$ |

**Table:** Evaluation on Foreground/Background
 Segmentation Task. Precision signifies the accuracy of clutter classification.